wrong domain in pyomo answer

I have model with 2 BigM cosntraints
i use pyomo for generate model and solve it with cplex software solver/gmas cplex&gurobi
Pyomo 6.7.0
cplex 22.1.0
gams 25.1.2.0
i define some variables as below

model.x = Var(model.N * model.N, domain=Binary, initialize=0)
model.z = Var(model.N, domain=NonNegativeReals, initialize=0)
model.b = Var(model.N, domain=NonNegativeReals, initialize=0)
model.t = Var(model.N, domain=Reals, initialize=0)
model.w = Var(model.N * model.N, domain=Reals, initialize=0)

i set Bigm equal to 100.

here is my two bigM constraints

# c1_3
def C1_3(model: AbstractModel, i, k):
    return model.w[i,k] <= model.BigM * model.x[i,k]

# Add the rule to the model
model.C1_3 = Constraint(model.N3, model.N, rule=C1_3)

# c3_3
def C3_3(model: AbstractModel, k):
    return model.w[2,k] <= model.BigM * model.x[2,k]

# Add the rule to the model
model.C3_3 = Constraint(model.N, rule=C3_3)

first question

here is solution for gmas cplex solver


27 Declarations: N N2 N3 Pi BigM x_index x z b t w_index w OBJ C1_2 C1_3_index C1_3 C1 C2 C3_2 C3_3 C3 C4 C5 C6 C7 C8 C9 

Problem:
- Name: tmp_znc2rla
  Lower bound: 155.06617009579196
  Upper bound: 155.06617009579196
  Number of objectives: 1
  Number of constraints: 114
  Number of variables: 142
  Number of nonzeros: 491
  Sense: minimize
Solver:
- Status: ok
  User time: 15.72
  Termination condition: optimal
  Termination message: MIP - Integer optimal solutionx3a Objective = 1.5506617010e+02
  Statistics:
    Branch and bound:
      Number of bounded subproblems: 8981
      Number of created subproblems: 8981
  Error rc: 0
  Time: 15.961628437042236
Solution:
- number of solutions: 0
  number of solutions displayed: 0

Variable x
    (1, 1)
    (1, 2)= 1.0
    (1, 3)
    (1, 4)
    (1, 5)
    (1, 6)
    (1, 7)
    (1, 8)
    (2, 1)
    (2, 2)
    (2, 3)
    (2, 4)
    (2, 5)
    (2, 6)= 1.00000000023
    (2, 7)
    (2, 8)= 4347825727.215808
    (3, 1)
    (3, 2)
    (3, 3)
    (3, 4)
    (3, 5)
    (3, 6)
    (3, 7)
    (3, 8)= 1.0
    (4, 1)
    (4, 2)
    (4, 3)
    (4, 4)
    (4, 5)= 1.0
    (4, 6)
    (4, 7)= 3817208288.843674
    (4, 8)= -3817208288.843674
    (5, 1)= 1.0
    (5, 2)
    (5, 3)
    (5, 4)
    (5, 5)
    (5, 6)
    (5, 7)= -128612821486.68263
    (5, 8)= 128612821486.68263
    (6, 1)
    (6, 2)
    (6, 3)
    (6, 4)
    (6, 5)= -4347825728.215811
    (6, 6)= 4347825728.215811
    (6, 7)= 1.0
    (6, 8)
    (7, 1)
    (7, 2)
    (7, 3)
    (7, 4)= 1.0
    (7, 5)
    (7, 6)
    (7, 7)= -41328694784.23347
    (7, 8)= 41328694784.233444
    (8, 1)
    (8, 2)
    (8, 3)= 1.0
    (8, 4)
    (8, 5)= 4347825728.215811
    (8, 6)
    (8, 7)= -4347825728.215811
    (8, 8)
Variable z
    1= 0.23
    2= 0.05048780488559286
    3= 0.033704909829425395
    4= 0.0232999889531211
    5= 0.01719167679563222
    6= 0.014376797429941019
    7= 0.011119273568327412
    8= 0.006448859860163252
Variable b
    1= 0.23
    2= 0.27000000003630464
    3= 0.65
    4= 0.46999999999416203
    5= 0.5000000000001962
    6= 0.6099999998651174
    7= 0.3900000000003713
    8= 0.24999999999298045
Variable t
    3= 0.06468750001238438
    4= 0.1013941221380149
    5= 0.07547621322907092
    6= 0.06557717894832199
    7= 0.08780527428077939
    8= 0.049073944029608595
Variable w
    (2, 1)
    (2, 2)
    (2, 3)= -999974253.6153661
    (2, 4)
    (2, 5)
    (2, 6)= 0.22999999999999987
    (2, 7)
    (2, 8)= 999976918.0205219
    (3, 1)
    (3, 2)
    (3, 3)
    (3, 4)= -252549729.38354373
    (3, 5)
    (3, 6)
    (3, 7)
    (3, 8)= 0.06468749999581547
    (4, 1)
    (4, 2)
    (4, 3)
    (4, 4)
    (4, 5)= 0.10139412209569595
    (4, 6)
    (4, 7)= 183486671.41322446
    (4, 8)= -104533519.72574876
    (5, 1)= 0.07547621323350022
    (5, 2)
    (5, 3)
    (5, 4)
    (5, 5)
    (5, 6)
    (5, 7)
    (5, 8)= 1286128214.8668263
    (6, 1)
    (6, 2)
    (6, 3)
    (6, 4)
    (6, 5)= -1545736679.8193102
    (6, 6)= 1545468104.1245408
    (6, 7)= 0.06557717894832248
    (6, 8)
    (7, 1)
    (7, 2)
    (7, 3)
    (7, 4)= 0.08780527429914714
    (7, 5)
    (7, 6)
    (7, 7)= -26863651609.75159
    (7, 8)= 413286947.84233445
    (8, 1)
    (8, 2)
    (8, 3)= 0.049073944035091306
    (8, 4)
    (8, 5)= 2826156297.618622
    (8, 6)
    (8, 7)= 520075495.81888485
    (8, 8)
obj_val: 155.06617009579196
    (8, 1)
    (8, 2)
    (8, 3)= 0.049073944035091306
    (8, 4)
    (8, 5)= 2826156297.618622
    (8, 6)
    (8, 7)= 520075495.81888485
    (8, 8)
obj_val: 155.06617009579196
Start time: Wed Jul 24 11:31:14 2024
End time: Wed Jul 24 11:31:30 2024
Duration (seconds): 16.03162407875061

why does in this solution that slolved by cplex solver domian of x,w isn’t correct and x get value other than 0,1?

second question

here is solution for gmas cplex solver

Problem:
- Name: Cx3aUsersXxLonelyAppDataLocalTemptmp2ybm850cmodel.gms
  Lower bound: 139.5641843005433
  Upper bound: 155.0661701337002
  Number of objectives: 1
  Number of constraints: 115.0
  Number of variables: 143.0
  Number of binary variables: None
  Number of integer variables: 64.0
  Number of continuous variables: 79.0
  Number of nonzeros: 493.0
  Sense: minimize
Solver:
- Name: GAMS (25, 1, 2, 0)
  Status: ok
  Return code: 0
  Message: None
  User time: 2.463000244461
  System time: None
  Wallclock time: None
  Termination condition: optimal
  Termination message: None
Solution:
- number of solutions: 0
  number of solutions displayed: 0

Variable x
    (1, 1)
    (1, 2)= 1.0
    (1, 3)
    (1, 4)
    (1, 5)
    (1, 6)
    (1, 7)
    (1, 8)
    (2, 1)
    (2, 2)
    (2, 3)
    (2, 4)
    (2, 5)
    (2, 6)= 1.0
    (2, 7)
    (2, 8)
    (3, 1)
    (3, 2)
    (3, 3)
    (3, 4)
    (3, 5)
    (3, 6)
    (3, 7)
    (3, 8)= 1.0
    (4, 1)
    (4, 2)
    (4, 3)
    (4, 4)
    (4, 5)= 1.0
    (4, 6)
    (4, 7)
    (4, 8)
    (5, 1)= 1.0
    (5, 2)
    (5, 3)
    (5, 4)
    (5, 5)
    (5, 6)
    (5, 7)
    (5, 8)
    (6, 1)
    (6, 2)
    (6, 3)
    (6, 4)
    (6, 5)
    (6, 6)
    (6, 7)= 1.0
    (6, 8)
    (7, 1)
    (7, 2)
    (7, 3)
    (7, 4)= 1.0
    (7, 5)
    (7, 6)
    (7, 7)
    (7, 8)
    (8, 1)
    (8, 2)
    (8, 3)= 1.0
    (8, 4)
    (8, 5)
    (8, 6)
    (8, 7)
    (8, 8)
Variable z
    1= 0.22999999999999993
    2= 0.05048780487804879
    3= 0.033704909819639285
    4= 0.023299988946612143
    5= 0.01719167679098487
    6= 0.014376797426483129
    7= 0.011119273565761674
    8= 0.006448859858586732
Variable b
    1= 0.22999999999999993
    2= 0.26999999999999996
    3= 0.6500000000000001
    4= 0.47000000000000003
    5= 0.5
    6= 0.61
    7= 0.39
    8= 0.25
Variable t
    3= 0.06468750000000001
    4= 0.10139412207987947
    5= 0.07547621320984417
    6= 0.06557717893226127
    7= 0.08780527427302752
    8= 0.049073944019921836
Variable w
    (2, 1)
    (2, 2)
    (2, 3)
    (2, 4)
    (2, 5)
    (2, 6)= 0.22999999999999993
    (2, 7)
    (2, 8)
    (3, 1)
    (3, 2)
    (3, 3)
    (3, 4)
    (3, 5)
    (3, 6)
    (3, 7)
    (3, 8)= 0.06468750000000001
    (4, 1)
    (4, 2)
    (4, 3)
    (4, 4)
    (4, 5)= 0.10139412207987947
    (4, 6)
    (4, 7)
    (4, 8)
    (5, 1)= 0.07547621320984417
    (5, 2)
    (5, 3)
    (5, 4)
    (5, 5)
    (5, 6)
    (5, 7)
    (5, 8)
    (6, 1)
    (6, 2)
    (6, 3)
    (6, 4)
    (6, 5)
    (6, 6)
    (6, 7)= 0.06557717893226127
    (6, 8)
    (7, 1)
    (7, 2)
    (7, 3)
    (7, 4)= 0.08780527427302752
    (7, 5)
    (7, 6)
    (7, 7)
    (7, 8)
    (8, 1)
    (8, 2)
    (8, 3)= 0.049073944019921836
    (8, 4)
    (8, 5)
    (8, 6)
    (8, 7)
    (8, 8)
obj_val: 155.0661701337002
Start time: Mon Jul 25 11:38:49 1994
End time: Mon Jul 25 11:38:51 1994
Duration (seconds): 2.817117691040039

as u can there is a feasible optimal solution also this optimality of this result is confirmed by other calculation

as u can see my 2 cosntraints i only compare x and w and w get value less than 1
now if i put BigM to 10 in order to reduce computation time i get infeasible soulotion why does this happen?

here is result for BigM = 10

Problem:
- Name: Cx3aUsersXxLonelyAppDataLocalTemptmpy4z93meamodel.gms
  Lower bound: -inf
  Upper bound: nan
  Number of objectives: 1
  Number of constraints: 115.0
  Number of variables: 143.0
  Number of binary variables: None
  Number of integer variables: 64.0
  Number of continuous variables: 79.0
  Number of nonzeros: 493.0
  Sense: minimize
Solver:
- Name: GAMS (25, 1, 2, 0)
  Status: ok
  Return code: 0
  Message: None
  User time: 0.030000088736415
  System time: None
  Wallclock time: None
  Termination condition: infeasible
  Termination message: None
Solution:
- number of solutions: 0
  number of solutions displayed: 0

Variable x
    (1, 1)
    (1, 2)
    (1, 3)
    (1, 4)
    (1, 5)
    (1, 6)
    (1, 7)
    (1, 8)
    (2, 1)
    (2, 2)
    (2, 3)
    (2, 4)
    (2, 5)
    (2, 6)
    (2, 7)
    (2, 8)
    (3, 1)
    (3, 2)
    (3, 3)
    (3, 4)
    (3, 5)
    (3, 6)
    (3, 7)
    (3, 8)
    (4, 1)
    (4, 2)
    (4, 3)
    (4, 4)
    (4, 5)
    (4, 6)
    (4, 7)
    (4, 8)
    (5, 1)
    (5, 2)
    (5, 3)
    (5, 4)
    (5, 5)
    (5, 6)
    (5, 7)
    (5, 8)
    (6, 1)
    (6, 2)
    (6, 3)
    (6, 4)
    (6, 5)
    (6, 6)
    (6, 7)
    (6, 8)
    (7, 1)
    (7, 2)
    (7, 3)
    (7, 4)
    (7, 5)
    (7, 6)
    (7, 7)
    (7, 8)
    (8, 1)
    (8, 2)
    (8, 3)
    (8, 4)
    (8, 5)
    (8, 6)
    (8, 7)
    (8, 8)
Variable z
    1
    2
    3
    4
    5
    6
    7
    8
Variable b
    1
    2
    3
    4
    5
    6
    7
    8
Variable t
    3
    4
    5
    6
    7
    8
Variable w
    (2, 1)
    (2, 2)
    (2, 3)
    (2, 4)
    (2, 5)
    (2, 6)
    (2, 7)
    (2, 8)
    (3, 1)
    (3, 2)
    (3, 3)
    (3, 4)
    (3, 5)
    (3, 6)
    (3, 7)
    (3, 8)
    (4, 1)
    (4, 2)
    (4, 3)
    (4, 4)
    (4, 5)
    (4, 6)
    (4, 7)
    (4, 8)
    (5, 1)
    (5, 2)
    (5, 3)
    (5, 4)
    (5, 5)
    (5, 6)
    (5, 7)
    (5, 8)
    (6, 1)
    (6, 2)
    (6, 3)
    (6, 4)
    (6, 5)
    (6, 6)
    (6, 7)
    (6, 8)
    (7, 1)
    (7, 2)
    (7, 3)
    (7, 4)
    (7, 5)
    (7, 6)
    (7, 7)
    (7, 8)
    (8, 1)
    (8, 2)
    (8, 3)
    (8, 4)
    (8, 5)
    (8, 6)
    (8, 7)
    (8, 8)
obj_val: 0.0
Start time: Mon Jul 25 11:45:29 1994
End time: Mon Jul 25 11:45:29 1994
Duration (seconds): 0.29376542568206787

3th question
why does cplex and gams cplex solver solution are diffrent and why does when i use other configuration that both them give me same result cplex solving time is more than gams cplex signifently
gams = 3 cplex =16
in small meduim problem

4th question
does really pyomo make solving time dramatically slower that make me use cplex or gams instead of pyomo for lage sacale model?
u want to point that this run time is also high for this scale of model

here is my full code

from pyomo.environ import *
import time
# AbstractModel, Set, Param, Var, Objective, Constraint, summation

# Create model
model = AbstractModel()

# define Sets
# numbre of cities
model.N = Set()
model.N2 = Set()
model.N3 = Set()

model.Pi = Param(model.N)

model.BigM = Param()

# 
model.x = Var(model.N * model.N, domain=Binary)
model.z = Var(model.N, domain=NonNegativeReals)
model.b = Var(model.N, domain=NonNegativeReals)
model.t = Var(model.N3, domain=NonNegativeReals)
model.w = Var(model.N2 * model.N, domain=NonNegativeReals)

# define Objective Funvtion
# Objective Funvtion
def obj_expression(model: AbstractModel):
    return model.z[8]

model.OBJ = Objective(rule=obj_expression)


# c1_2
def C1_2(model: AbstractModel, i):
    return sum(model.w[i,k] for k in model.N) == model.t[i]

# Add the rule to the model
model.C1_2 = Constraint(model.N3, rule=C1_2)

# c1_3
def C1_3(model: AbstractModel, i, k):
    return model.w[i,k] <= model.BigM * model.x[i,k]

# Add the rule to the model
model.C1_3 = Constraint(model.N3, model.N, rule=C1_3)

# c1
def C1(model: AbstractModel, i):
    return model.z[i] == model.b[i] + sum(model.w[i,k]/model.Pi[k] for k in model.N) + model.z[i-2]

# Add the rule to the model
model.C1 = Constraint(model.N3, rule=C1)

# c2
def C2(model: AbstractModel, i):
    return model.t[i] == model.z[i-1] - model.z[i-2]

# Add the rule to the model
model.C2 = Constraint(model.N3, rule=C2)

# c3_2
def C3_2(model: AbstractModel):
    return sum(model.w[2,k] for k in model.N) == model.z[1]

# Add the rule to the model
model.C3_2 = Constraint(rule=C3_2)

# c3_3
def C3_3(model: AbstractModel, k):
    return model.w[2,k] <= model.BigM * model.x[2,k]

# Add the rule to the model
model.C3_3 = Constraint(model.N, rule=C3_3)

# c3
def C3(model: AbstractModel):
    return model.z[2] == model.b[2] + sum(model.w[2,k]/model.Pi[k] for k in model.N)

# Add the rule to the model
model.C3 = Constraint(rule=C3)

# c4
def C4(model: AbstractModel):
    return model.z[1] == model.b[1]

# Add the rule to the model
model.C4 = Constraint(rule=C4)


# c5
def C5(model: AbstractModel, i):

    return model.b[i] == sum(model.x[i,k] / model.Pi[k] for k in model.N)

# Add the rule to the model
model.C5 = Constraint(model.N, rule=C5)

# c6
def C6(model: AbstractModel, i):

    return sum(model.x[i,k] for k in model.N) == 1

# Add the rule to the model
model.C6 = Constraint(model.N, rule=C6)

# c7
def C7(model: AbstractModel, k):

    return sum(model.x[i,k] for i in model.N) == 1

# Add the rule to the model
model.C7 = Constraint(model.N, rule=C7)

# c8
def C8(model: AbstractModel, i):
    if i < 3:
        return Constraint.Skip 

    return model.t[i] >= 0

# Add the rule to the model
model.C8 = Constraint(model.N, rule=C8)

# c9
def C9(model: AbstractModel, i):
    if i == 1:
        return Constraint.Skip 

    return model.z[i-1] <= model.z[i]

# Add the rule to the model
model.C9 = Constraint(model.N, rule=C9)

# create instance
instance = model.create_instance("data.dat")
# instance.display()
instance.pprint()

# Record the start time
start_time = time.time()

# solve model

# cplex
opt = SolverFactory('cplex')
opt.options['mip_display'] = 5
results = opt.solve(instance,  tee=False)

# # gams
# solvername = 'gams'
# opt = SolverFactory(solvername)
# results = opt.solve(
#     instance, solver='cplex')

# Record the end time
end_time = time.time()
duration = end_time - start_time

print(results)

for v in instance.component_objects(Var):
    print("Variable",v)

    for index in v:
        try:
            # print (f"    {index}= {value(v[index])}")
            # if value(v[index]) != 0:
            print (f"    {index}= {1/value(v[index])}")

        except:
            print (f"    {index}")
            continue

print(f"obj_val: {value(instance.OBJ)}")
print("Start time:", time.ctime(start_time))
print("End time:", time.ctime(end_time))
print("Duration (seconds):", duration)

my data,dat file

set N := 1 2 3 4 5 6 7 8;
set N2 := 2 3 4 5 6 7 8;
set N3 := 3 4 5 6 7 8;

param Pi :=
1 0.5
2 0.23
3 0.25
4 0.39
5 0.47
6 0.27
7 0.61
8 0.65
;

param BigM := 100;

i search in internet i saw pyomo was slow in prevoius version but that was for long time ago and they solved this problem by intrducing solverfactory

i also find solver_io=’python’ but coludn’t use it

i tried biger BigM=1000 and they both give me same optimal result

New contributor

No name is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật