def add_issue_state(df_tr):
df_status = df_tr.copy(deep=True)
st_len = df_status.shape[0]
idx = 1
while idx<=st_len:
if idx==1:
prev_issue = False
else:
prev_issue = df_status['{}_Issue'.format(tr_col)][idx-2]
flag_critical = np.logical_or(prev_issue, df_status['{}_critical'.format(tr_col)][idx-1])
issue = np.subtract(flag_critical, df_status['{}_healthy'.format(tr_col)][idx-1], dtype=np.int) > 0
df_status['{}_Issue'.format(tr_col)].iat[idx-1] = issue
idx += 1
return df_status
How to build this with pyspark??
I tried using F.lag function.
1