<code>y = np.array([59817478.73563218, 56195352.29885057, 59679547.70114943,
61071789.08045977, 56678110.91954023, 56900812.06896552,
61942478.73563218, 57360582.18390805, 57423800.57471264,
61169490.22988506, 58930984.48275862, 56777248.85057471,
60586156.89655172, 59669490.22988506, 55715467.24137931,
60485582.18390805, 61771501.72413793, 56966904.02298851,
60666616.66666666, 56887881.03448276, 60699662.64367816,
61545927.01149426, 56418053.44827586, 58850524.71264368,
61071789.08045977, 57018628.16091954, 57936731.60919541,
62103398.27586207, 58135007.47126437, 56629260.34482759,
61922363.79310345, 59757133.90804598, 56195352.29885057,
60400812.06896552, 61711156.89655172, 56942478.73563218,
60438168.3908046 , 61416616.66666666, 57703972.98850574,
59380697.12643679, 62241329.31034483, 59031559.1954023 ,
58037306.32183908, 61216904.02298851, 61757133.90804598,
56735582.18390805, 58390754.59770115, 62216904.02298851,
58216904.02298851, 57432421.26436782, 61956846.55172414,
60350524.71264368, 61123513.21839081, 58541616.66666666,
56939605.1724138 , 60958283.33333334, 59976961.49425288,
56489892.52873563, 59129260.34482759, 60981271.83908046,
57620639.65517242, 58264317.81609196, 61824662.64367816,
57709720.11494253, 56376386.78160919, 60249950. ,
59544490.22988506, 56629260.34482759, 59455409.77011494,
x = np.array(['1900-01-01T04:39:51.596000000', '1900-01-01T04:39:53.873000000',
'1900-01-01T04:39:56.124000000', '1900-01-01T04:39:58.403000000',
'1900-01-01T04:40:00.655000000', '1900-01-01T04:40:02.904000000',
'1900-01-01T04:40:05.182000000', '1900-01-01T04:40:07.435000000',
'1900-01-01T04:40:09.714000000', '1900-01-01T04:40:11.962000000',
'1900-01-01T04:40:14.213000000', '1900-01-01T04:40:16.495000000',
'1900-01-01T04:40:18.745000000', '1900-01-01T04:40:21.025000000',
'1900-01-01T04:40:23.275000000', '1900-01-01T04:40:25.525000000',
'1900-01-01T04:40:27.804000000', '1900-01-01T04:40:30.115000000',
'1900-01-01T04:40:32.362000000', '1900-01-01T04:40:34.613000000',
'1900-01-01T04:40:36.895000000', '1900-01-01T04:40:39.146000000',
'1900-01-01T04:40:41.423000000', '1900-01-01T04:40:43.676000000',
'1900-01-01T04:40:45.926000000', '1900-01-01T04:40:48.203000000',
'1900-01-01T04:40:50.455000000', '1900-01-01T04:40:52.736000000',
'1900-01-01T04:40:54.986000000', '1900-01-01T04:40:57.235000000',
'1900-01-01T04:40:59.517000000', '1900-01-01T04:41:01.767000000',
'1900-01-01T04:41:04.046000000', '1900-01-01T04:41:06.297000000',
'1900-01-01T04:41:08.547000000', '1900-01-01T04:41:10.827000000',
'1900-01-01T04:41:13.078000000', '1900-01-01T04:41:15.357000000',
'1900-01-01T04:41:17.605000000', '1900-01-01T04:41:19.854000000',
'1900-01-01T04:41:22.138000000', '1900-01-01T04:41:24.387000000',
'1900-01-01T04:41:26.668000000', '1900-01-01T04:41:28.918000000',
'1900-01-01T04:41:31.168000000', '1900-01-01T04:41:33.448000000',
'1900-01-01T04:41:35.698000000', '1900-01-01T04:41:37.978000000',
'1900-01-01T04:41:40.228000000', '1900-01-01T04:41:42.479000000',
'1900-01-01T04:41:44.758000000', '1900-01-01T04:41:47.069000000',
'1900-01-01T04:41:49.319000000', '1900-01-01T04:41:51.569000000',
'1900-01-01T04:41:53.849000000', '1900-01-01T04:41:56.099000000',
'1900-01-01T04:41:58.378000000', '1900-01-01T04:42:00.629000000',
'1900-01-01T04:42:02.876000000', '1900-01-01T04:42:05.159000000',
'1900-01-01T04:42:07.410000000', '1900-01-01T04:42:09.690000000',
'1900-01-01T04:42:11.940000000', '1900-01-01T04:42:14.190000000',
'1900-01-01T04:42:16.471000000', '1900-01-01T04:42:18.720000000',
'1900-01-01T04:42:20.997000000', '1900-01-01T04:42:23.251000000',
'1900-01-01T04:42:25.500000000', '1900-01-01T04:42:27.781000000'],
np.trapz(y, x) => numpy.timedelta64(-9204159157384838832,'ns')
<code>y = np.array([59817478.73563218, 56195352.29885057, 59679547.70114943,
61071789.08045977, 56678110.91954023, 56900812.06896552,
61942478.73563218, 57360582.18390805, 57423800.57471264,
61169490.22988506, 58930984.48275862, 56777248.85057471,
60586156.89655172, 59669490.22988506, 55715467.24137931,
60485582.18390805, 61771501.72413793, 56966904.02298851,
60666616.66666666, 56887881.03448276, 60699662.64367816,
61545927.01149426, 56418053.44827586, 58850524.71264368,
61071789.08045977, 57018628.16091954, 57936731.60919541,
62103398.27586207, 58135007.47126437, 56629260.34482759,
61922363.79310345, 59757133.90804598, 56195352.29885057,
60400812.06896552, 61711156.89655172, 56942478.73563218,
60438168.3908046 , 61416616.66666666, 57703972.98850574,
59380697.12643679, 62241329.31034483, 59031559.1954023 ,
58037306.32183908, 61216904.02298851, 61757133.90804598,
56735582.18390805, 58390754.59770115, 62216904.02298851,
58216904.02298851, 57432421.26436782, 61956846.55172414,
60350524.71264368, 61123513.21839081, 58541616.66666666,
56939605.1724138 , 60958283.33333334, 59976961.49425288,
56489892.52873563, 59129260.34482759, 60981271.83908046,
57620639.65517242, 58264317.81609196, 61824662.64367816,
57709720.11494253, 56376386.78160919, 60249950. ,
59544490.22988506, 56629260.34482759, 59455409.77011494,
61320352.29885057])
x = np.array(['1900-01-01T04:39:51.596000000', '1900-01-01T04:39:53.873000000',
'1900-01-01T04:39:56.124000000', '1900-01-01T04:39:58.403000000',
'1900-01-01T04:40:00.655000000', '1900-01-01T04:40:02.904000000',
'1900-01-01T04:40:05.182000000', '1900-01-01T04:40:07.435000000',
'1900-01-01T04:40:09.714000000', '1900-01-01T04:40:11.962000000',
'1900-01-01T04:40:14.213000000', '1900-01-01T04:40:16.495000000',
'1900-01-01T04:40:18.745000000', '1900-01-01T04:40:21.025000000',
'1900-01-01T04:40:23.275000000', '1900-01-01T04:40:25.525000000',
'1900-01-01T04:40:27.804000000', '1900-01-01T04:40:30.115000000',
'1900-01-01T04:40:32.362000000', '1900-01-01T04:40:34.613000000',
'1900-01-01T04:40:36.895000000', '1900-01-01T04:40:39.146000000',
'1900-01-01T04:40:41.423000000', '1900-01-01T04:40:43.676000000',
'1900-01-01T04:40:45.926000000', '1900-01-01T04:40:48.203000000',
'1900-01-01T04:40:50.455000000', '1900-01-01T04:40:52.736000000',
'1900-01-01T04:40:54.986000000', '1900-01-01T04:40:57.235000000',
'1900-01-01T04:40:59.517000000', '1900-01-01T04:41:01.767000000',
'1900-01-01T04:41:04.046000000', '1900-01-01T04:41:06.297000000',
'1900-01-01T04:41:08.547000000', '1900-01-01T04:41:10.827000000',
'1900-01-01T04:41:13.078000000', '1900-01-01T04:41:15.357000000',
'1900-01-01T04:41:17.605000000', '1900-01-01T04:41:19.854000000',
'1900-01-01T04:41:22.138000000', '1900-01-01T04:41:24.387000000',
'1900-01-01T04:41:26.668000000', '1900-01-01T04:41:28.918000000',
'1900-01-01T04:41:31.168000000', '1900-01-01T04:41:33.448000000',
'1900-01-01T04:41:35.698000000', '1900-01-01T04:41:37.978000000',
'1900-01-01T04:41:40.228000000', '1900-01-01T04:41:42.479000000',
'1900-01-01T04:41:44.758000000', '1900-01-01T04:41:47.069000000',
'1900-01-01T04:41:49.319000000', '1900-01-01T04:41:51.569000000',
'1900-01-01T04:41:53.849000000', '1900-01-01T04:41:56.099000000',
'1900-01-01T04:41:58.378000000', '1900-01-01T04:42:00.629000000',
'1900-01-01T04:42:02.876000000', '1900-01-01T04:42:05.159000000',
'1900-01-01T04:42:07.410000000', '1900-01-01T04:42:09.690000000',
'1900-01-01T04:42:11.940000000', '1900-01-01T04:42:14.190000000',
'1900-01-01T04:42:16.471000000', '1900-01-01T04:42:18.720000000',
'1900-01-01T04:42:20.997000000', '1900-01-01T04:42:23.251000000',
'1900-01-01T04:42:25.500000000', '1900-01-01T04:42:27.781000000'],
dtype='datetime64[ns]')
np.trapz(y, x) => numpy.timedelta64(-9204159157384838832,'ns')
</code>
y = np.array([59817478.73563218, 56195352.29885057, 59679547.70114943,
61071789.08045977, 56678110.91954023, 56900812.06896552,
61942478.73563218, 57360582.18390805, 57423800.57471264,
61169490.22988506, 58930984.48275862, 56777248.85057471,
60586156.89655172, 59669490.22988506, 55715467.24137931,
60485582.18390805, 61771501.72413793, 56966904.02298851,
60666616.66666666, 56887881.03448276, 60699662.64367816,
61545927.01149426, 56418053.44827586, 58850524.71264368,
61071789.08045977, 57018628.16091954, 57936731.60919541,
62103398.27586207, 58135007.47126437, 56629260.34482759,
61922363.79310345, 59757133.90804598, 56195352.29885057,
60400812.06896552, 61711156.89655172, 56942478.73563218,
60438168.3908046 , 61416616.66666666, 57703972.98850574,
59380697.12643679, 62241329.31034483, 59031559.1954023 ,
58037306.32183908, 61216904.02298851, 61757133.90804598,
56735582.18390805, 58390754.59770115, 62216904.02298851,
58216904.02298851, 57432421.26436782, 61956846.55172414,
60350524.71264368, 61123513.21839081, 58541616.66666666,
56939605.1724138 , 60958283.33333334, 59976961.49425288,
56489892.52873563, 59129260.34482759, 60981271.83908046,
57620639.65517242, 58264317.81609196, 61824662.64367816,
57709720.11494253, 56376386.78160919, 60249950. ,
59544490.22988506, 56629260.34482759, 59455409.77011494,
61320352.29885057])
x = np.array(['1900-01-01T04:39:51.596000000', '1900-01-01T04:39:53.873000000',
'1900-01-01T04:39:56.124000000', '1900-01-01T04:39:58.403000000',
'1900-01-01T04:40:00.655000000', '1900-01-01T04:40:02.904000000',
'1900-01-01T04:40:05.182000000', '1900-01-01T04:40:07.435000000',
'1900-01-01T04:40:09.714000000', '1900-01-01T04:40:11.962000000',
'1900-01-01T04:40:14.213000000', '1900-01-01T04:40:16.495000000',
'1900-01-01T04:40:18.745000000', '1900-01-01T04:40:21.025000000',
'1900-01-01T04:40:23.275000000', '1900-01-01T04:40:25.525000000',
'1900-01-01T04:40:27.804000000', '1900-01-01T04:40:30.115000000',
'1900-01-01T04:40:32.362000000', '1900-01-01T04:40:34.613000000',
'1900-01-01T04:40:36.895000000', '1900-01-01T04:40:39.146000000',
'1900-01-01T04:40:41.423000000', '1900-01-01T04:40:43.676000000',
'1900-01-01T04:40:45.926000000', '1900-01-01T04:40:48.203000000',
'1900-01-01T04:40:50.455000000', '1900-01-01T04:40:52.736000000',
'1900-01-01T04:40:54.986000000', '1900-01-01T04:40:57.235000000',
'1900-01-01T04:40:59.517000000', '1900-01-01T04:41:01.767000000',
'1900-01-01T04:41:04.046000000', '1900-01-01T04:41:06.297000000',
'1900-01-01T04:41:08.547000000', '1900-01-01T04:41:10.827000000',
'1900-01-01T04:41:13.078000000', '1900-01-01T04:41:15.357000000',
'1900-01-01T04:41:17.605000000', '1900-01-01T04:41:19.854000000',
'1900-01-01T04:41:22.138000000', '1900-01-01T04:41:24.387000000',
'1900-01-01T04:41:26.668000000', '1900-01-01T04:41:28.918000000',
'1900-01-01T04:41:31.168000000', '1900-01-01T04:41:33.448000000',
'1900-01-01T04:41:35.698000000', '1900-01-01T04:41:37.978000000',
'1900-01-01T04:41:40.228000000', '1900-01-01T04:41:42.479000000',
'1900-01-01T04:41:44.758000000', '1900-01-01T04:41:47.069000000',
'1900-01-01T04:41:49.319000000', '1900-01-01T04:41:51.569000000',
'1900-01-01T04:41:53.849000000', '1900-01-01T04:41:56.099000000',
'1900-01-01T04:41:58.378000000', '1900-01-01T04:42:00.629000000',
'1900-01-01T04:42:02.876000000', '1900-01-01T04:42:05.159000000',
'1900-01-01T04:42:07.410000000', '1900-01-01T04:42:09.690000000',
'1900-01-01T04:42:11.940000000', '1900-01-01T04:42:14.190000000',
'1900-01-01T04:42:16.471000000', '1900-01-01T04:42:18.720000000',
'1900-01-01T04:42:20.997000000', '1900-01-01T04:42:23.251000000',
'1900-01-01T04:42:25.500000000', '1900-01-01T04:42:27.781000000'],
dtype='datetime64[ns]')
np.trapz(y, x) => numpy.timedelta64(-9204159157384838832,'ns')
Both scipy.integrate and np.trapz give negative values.