Why doesn’t a const reference extend the life of a temporary object passed via a function?

In the following simple example, why can’t ref2 be bound to the result of min(x,y+1)?

#include <cstdio>
template< typename T > const T& min(const T& a, const T& b){ return a < b ? a : b ; }

int main(){
      int x = 10, y = 2;
      const int& ref = min(x,y); //OK
      const int& ref2 = min(x,y+1); //NOT OK, WHY?
      return ref2; // Compiles to return 0
}

live example – produces:

main:
  xor eax, eax
  ret

EDIT:
Below example better described a situation, I think.

#include <stdio.h>


template< typename T >
constexpr T const& min( T const& a, T const& b ) { return a < b ? a : b ; }



constexpr int x = 10;
constexpr int y = 2;

constexpr int const& ref = min(x,y);  // OK

constexpr int const& ref2 = min(x,y+1); // Compiler Error

int main()
{
      return 0;
}

live example produces:

<source>:14:38: error: '<anonymous>' is not a constant expression

 constexpr int const& ref2 = min(x,y+1);

                                      ^

Compiler returned: 1

12

It’s by design. In a nutshell, only the named reference to which the temporary is bound directly will extend its lifetime.

[class.temporary]

5 There are three contexts in which temporaries are destroyed at a
different point than the end of the full-expression. […]

6 The third context is when a reference is bound to a temporary.
The temporary to which the reference is bound or the temporary that is
the complete object of a subobject to which the reference is bound
persists for the lifetime of the reference except:

  • A temporary object bound to a reference parameter in a function call persists until the completion of the full-expression containing
    the call.
  • The lifetime of a temporary bound to the returned value in a function return statement is not extended; the temporary is destroyed
    at the end of the full-expression in the return statement.
  • […]

You didn’t bind directly to ref2, and you even pass it via a return statement. The standard explicitly says it won’t extend the lifetime. In part to make certain optimizations possible. But ultimately, because keeping track of which temporary should be extended when a reference is passed in and out of functions is intractable in general.

Since compilers may optimize aggressively on the assumption that your program exhibits no undefined behavior, you see a possible manifestation of that. Accessing a value outside its lifetime is undefined, this is what return ref2; does, and since the behavior is undefined, simply returning zero is a valid behavior to exhibit. No contract is broken by the compiler.

1

This is intentional. A reference can only extend the lifetime of a temporary when it is bound to that temporary directly. In your code, you are binding ref2 to the result of min, which is a reference. It doesn’t matter that that reference references a temporary. Only b extends the lifetime of the temporary; it doesn’t matter that ref2 also refers to that same temporary.

Another way to look at it: You can’t optionally have lifetime extension. It’s a static property. If ref2 would do the Correct Thingtm, then depending on the runtime values of x and y+1 the lifetime is extended or not. Not something the compiler is able to do.

I will answer the question first, and then provide some context for the answer. The current working draft contains the following wording:

The temporary object to which the reference is bound or the temporary object that is the complete object of a subobject to which the reference is bound persists for the lifetime of the reference if the glvalue to which the reference is bound was obtained through one of the following:

  • a temporary materialization conversion ([conv.rval]),
  • ( expression ), where expression is one of these expressions,
  • subscripting ([expr.sub]) of an array operand, where that operand is one of these expressions,
  • a class member access ([expr.ref]) using the . operator where the left operand is one of these expressions and the right operand designates a non-static data member of non-reference type,
  • a pointer-to-member operation ([expr.mptr.oper]) using the .* operator where the left operand is one of these expressions and the right operand is a pointer to data member of non-reference type,
  • a const_­cast ([expr.const.cast]), static_­cast ([expr.static.cast]), dynamic_­cast ([expr.dynamic.cast]), or reinterpret_­cast ([expr.reinterpret.cast])
    converting, without a user-defined conversion, a glvalue operand that is one of these expressions to a glvalue that refers to the object designated by the operand, or to its complete object or a subobject thereof,
  • a conditional expression ([expr.cond]) that is a glvalue where the second or third operand is one of these expressions, or
  • a comma expression ([expr.comma]) that is a glvalue where the right operand is one of these expressions.

According to this, when a reference is bound to a glvalue returned from a function call, lifetime extension does not occur, because the glvalue was obtained from the function call, which is not one of the permitted expressions for lifetime extension.

The lifetime of the y+1 temporary is extended once when bound to the reference parameter b. Here, the prvalue y+1 is materialized to yield an xvalue, and the reference is bound to the result of the temporary materialization conversion; lifetime extension thus occurs. When the min function returns, however, ref2 is bound to the result of the call, and lifetime extension does not occur here. Therefore, the y+1 temporary is destroyed at the end of the definition of ref2, and ref2 becomes a dangling reference.


There has historically been some confusion on this topic. It is well-known that the OP’s code and similar code result in a dangling reference, but the standard text, even as of C++17, did not provide an unambiguous explanation as to why.

It is often claimed that lifetime extension only applies when the reference binds “directly” to the temporary, but the standard has never said anything to that effect. Indeed, the standard defines what it means for a reference to “bind directly”, and that definition (e.g., const std::string& s = "foo"; is an indirect reference binding) is clearly not relevant here.

Rakete1111 has said in a comment elsewhere on SO that lifetime extension only applies when the reference binds to a prvalue (rather than some glvalue that was obtained through a previous reference binding to that temporary object); they appear to be saying something similar here by “bound … directly”. However, there is no textual support for this theory. Indeed, code like the following has sometimes been considered to trigger lifetime extension:

struct S { int x; };
const int& r = S{42}.x;

However, in C++14, the expression S{42}.x became an xvalue, so if lifetime extension applies here, then it is not because the reference binds to a prvalue.

One might instead claim that lifetime extension only applies once, and binding any other references to the same object do not further extend its lifetime. This would explain why the OP’s code creates a dangling reference, without preventing lifetime extension in the S{42}.x case. However, there is no statement to this effect in the standard, either.

StoryTeller has also said here that the reference must bind directly, but I don’t know what he means by that, either. He cites standards text indicating that binding a reference to a temporary in a return statement doesn’t extend its lifetime. However, that statement seems to be intended to apply to the case where the temporary in question is created by the full-expression in the return statement, since it says the temporary will be destroyed at the end of that full-expression. Clearly that’s not the case for the y+1 temporary, which will instead be destroyed at the end of the full-expression containing the call to min. Thus, I tend to think that this statement was not intended to apply to cases like that in the question. Instead, its effect, together with the other limitations on lifetime extension, is to prevent any temporary object’s lifetime from being extended beyond the block scope in which it was created. But this would not prevent the y+1 temporary in the question from surviving until the end of main.

Thus the question remains: what is the principle that explains why the binding of ref2 to the temporary in the question doesn’t extend that temporary’s lifetime?

The wording from the current working draft that I cited earlier was introduced by the resolution of CWG 1299, which was opened in 2011 but only resolved recently (not in time for C++17). In a sense, it clarifies the intuition that the reference must bind “directly”, by delineating those cases where the binding is “direct” enough for lifetime extension to occur; it is not, however, so restrictive as to only allow it when the reference binds to a prvalue. It permits lifetime extension in the S{42}.x case.

[The answer should be updated since non-constexpr version in fact compiles]

Non-constexpr version

Demo: https://godbolt.org/z/_p3njK

Explanation: The lifetime of the rvalue in question produced by y + 1 is in fact extended. This is because the return type of min is reference-to-const i.e const T& and whenever you have a reference-to-const binding directly to a rvalue type, the lifetime of the underlying rvalue value is extended till reference-to-const exists.

Going further, the reference-to-const output of min is then assigned directly to the lvalue name ref2 whose type is const int&; an int type should work here too (i.e int ref2 = min(x, y+1);) in which case the underlying rvalue will be copied over and reference-to-const will be destroyed.

In summary, the non-constexpr version should always produce the desired output at least in the latest version of compilers conforming with the modern C++’s standard.

constexpr version

The issue here is different since the type specifier of ref2 requires it to be a constexpr which in turn requires the expression to be a compile-time literal. Although in theory the lifetime extension could be applied here for constexpr reference-to-const types, C++ doesn’t permit it yet (i.e it doesn’t create temporary constexpr types to hold the underlying rvalues), perhaps because it prohibits some optimizations or makes the compiler’s job harder — not sure which one is it.

However, you should be able to workaround this case trivially by:

constexpr int value = min(x, y + 1);
constexpr int const& ref2 = value;

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật