Why does running Llama 3.1 70B model underutilises the GPU?

I have deployed Llama 3.1 70B and Llama 3.1 8B on my system and it works perfectly for the 8B model. When I tested it for 70B, it underutilized the GPU and took a lot of time to respond. Here are the system details:

CPU: Ryzen 7 3700x, RAM: 48g ddr4 2400, SSD: NVME m.2, GPU: RTX 3060 ti, Motherboard: B550 M:

sudo docker logs cybersage-lama
time=2024-12-05T09:04:12.081Z level=INFO source=server.go:105 msg="system memory" total="47.0 GiB" free="45.8 GiB" free_swap="3.9 GiB"
time=2024-12-05T09:04:12.082Z level=INFO source=memory.go:343 msg="offload to cuda" layers.requested=-1 layers.model=81 layers.offload=10 layers.split="" memory.available="[7.5 GiB]" memory.gpu_overhead="0 B" memory.required.full="44.0 GiB" memory.required.partial="7.2 GiB" memory.required.kv="640.0 MiB" memory.required.allocations="[7.2 GiB]" memory.weights.total="38.9 GiB" memory.weights.repeating="38.1 GiB" memory.weights.nonrepeating="822.0 MiB" memory.graph.full="324.0 MiB" memory.graph.partial="1.1 GiB"
time=2024-12-05T09:04:12.085Z level=INFO source=server.go:380 msg="starting llama server" cmd="/usr/lib/ollama/runners/cuda_v12/ollama_llama_server --model /root/.ollama/models/blobs/sha256-de20d2cf2dc430b1717a8b07a9df029d651f3895dbffec4729a3902a6fe344c9 --ctx-size 2048 --batch-size 512 --n-gpu-layers 10 --threads 8 --parallel 1 --port 44611"
time=2024-12-05T09:04:12.086Z level=INFO source=sched.go:449 msg="loaded runners" count=1
time=2024-12-05T09:04:12.086Z level=INFO source=server.go:559 msg="waiting for llama runner to start responding"
time=2024-12-05T09:04:12.087Z level=INFO source=server.go:593 msg="waiting for server to become available" status="llm server error"
time=2024-12-05T09:04:12.150Z level=INFO source=runner.go:939 msg="starting go runner"
time=2024-12-05T09:04:12.150Z level=INFO source=runner.go:940 msg=system info="AVX = 1 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 0 | FP16_VA = 0 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | cgo(gcc)" threads=8
time=2024-12-05T09:04:12.150Z level=INFO source=.:0 msg="Server listening on 127.0.0.1:44611"
llama_model_loader: loaded meta data with 29 key-value pairs and 724 tensors from /root/.ollama/models/blobs/sha256-de20d2cf2dc430b1717a8b07a9df029d651f3895dbffec4729a3902a6fe344c9 (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Meta Llama 3.1 70B Instruct
llama_model_loader: - kv   3:                           general.finetune str              = Instruct
llama_model_loader: - kv   4:                           general.basename str              = Meta-Llama-3.1
llama_model_loader: - kv   5:                         general.size_label str              = 70B
llama_model_loader: - kv   6:                            general.license str              = llama3.1
llama_model_loader: - kv   7:                               general.tags arr[str,6]       = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv   8:                          general.languages arr[str,8]       = ["en", "de", "fr", "it", "pt", "hi", ...
llama_model_loader: - kv   9:                          llama.block_count u32              = 80
llama_model_loader: - kv  10:                       llama.context_length u32              = 131072
llama_model_loader: - kv  11:                     llama.embedding_length u32              = 8192
llama_model_loader: - kv  12:                  llama.feed_forward_length u32              = 28672
llama_model_loader: - kv  13:                 llama.attention.head_count u32              = 64
llama_model_loader: - kv  14:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv  15:                       llama.rope.freq_base f32              = 500000.000000
llama_model_loader: - kv  16:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  17:                          general.file_type u32              = 15
llama_model_loader: - kv  18:                           llama.vocab_size u32              = 128256
llama_model_loader: - kv  19:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  20:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  21:                         tokenizer.ggml.pre str              = llama-bpe
llama_model_loader: - kv  22:                      tokenizer.ggml.tokens arr[str,128256]  = ["!", """, "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  23:                  tokenizer.ggml.token_type arr[i32,128256]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
time=2024-12-05T09:04:12.341Z level=INFO source=server.go:593 msg="waiting for server to become available" status="llm server loading model"
llama_model_loader: - kv  24:                      tokenizer.ggml.merges arr[str,280147]  = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv  25:                tokenizer.ggml.bos_token_id u32              = 128000
llama_model_loader: - kv  26:                tokenizer.ggml.eos_token_id u32              = 128009
llama_model_loader: - kv  27:                    tokenizer.chat_template str              = {{- bos_token }}n{%- if custom_tools ...
llama_model_loader: - kv  28:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:  162 tensors
llama_model_loader: - type q4_K:  441 tensors
llama_model_loader: - type q5_K:   40 tensors
llama_model_loader: - type q6_K:   81 tensors
llm_load_vocab: special tokens cache size = 256
llm_load_vocab: token to piece cache size = 0.7999 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 128256
llm_load_print_meta: n_merges         = 280147
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 131072
llm_load_print_meta: n_embd           = 8192
llm_load_print_meta: n_layer          = 80
llm_load_print_meta: n_head           = 64
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 8
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 28672
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 131072
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = 70B
llm_load_print_meta: model ftype      = Q4_K - Medium
llm_load_print_meta: model params     = 70.55 B
llm_load_print_meta: model size       = 39.59 GiB (4.82 BPW) 
llm_load_print_meta: general.name     = Meta Llama 3.1 70B Instruct
llm_load_print_meta: BOS token        = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token        = 128009 '<|eot_id|>'
llm_load_print_meta: LF token         = 128 'Ä'
llm_load_print_meta: EOT token        = 128009 '<|eot_id|>'
llm_load_print_meta: EOM token        = 128008 '<|eom_id|>'
llm_load_print_meta: EOG token        = 128008 '<|eom_id|>'
llm_load_print_meta: EOG token        = 128009 '<|eot_id|>'
llm_load_print_meta: max token length = 256
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 3060 Ti, compute capability 8.6, VMM: yes
llm_load_tensors: ggml ctx size =    0.68 MiB
llm_load_tensors: offloading 10 repeating layers to GPU
llm_load_tensors: offloaded 10/81 layers to GPU
llm_load_tensors:        CPU buffer size = 40543.11 MiB
llm_load_tensors:      CUDA0 buffer size =  5188.75 MiB
llama_new_context_with_model: n_ctx      = 2048
llama_new_context_with_model: n_batch    = 512
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base  = 500000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:  CUDA_Host KV buffer size =   560.00 MiB
llama_kv_cache_init:      CUDA0 KV buffer size =    80.00 MiB
llama_new_context_with_model: KV self size  =  640.00 MiB, K (f16):  320.00 MiB, V (f16):  320.00 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.52 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =  1088.45 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =    20.01 MiB
llama_new_context_with_model: graph nodes  = 2566
llama_new_context_with_model: graph splits = 914
time=2024-12-05T09:04:19.620Z level=INFO source=server.go:598 msg="llama runner started in 7.53 seconds"

Here is the output of nvidia-smi when a request is sent to the model using 70B:

+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 560.35.03              Driver Version: 560.35.03      CUDA Version: 12.6     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 3060 Ti     On  |   00000000:0A:00.0 Off |                  N/A |
| 30%   57C    P0             74W /  225W |    6534MiB /   8192MiB |      5%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
                                                                                     
+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A   3129822      C   ...unners/cuda_v12/ollama_llama_server       6524MiB |
+-----------------------------------------------------------------------------------------+

Here is how I deployed Llama 3.1 on the machine:

  1. Pull the LLaMA Docker Image: Pull the LLaMA Docker image (in this case, ollama/ollama):

    sudo docker pull ollama/ollama
    

    This test was successful.

  2. Test GPU Access: You can test GPU access by running a CUDA base image to confirm that Docker recognizes your GPU:

    sudo docker run --rm nvidia/cuda:11.8.0-base-ubuntu22.04 nvidia-smi
    
  3. Run the LLaMA Container: Run the LLaMA container with GPU access, mapping the host port to the container’s port without additional environment variables:

    sudo docker run -d --gpus all -p 11434:11434 --name cybersage-lama ollama/ollama
    

I am not sure why it is underutilizing the GPU and everything is going slow.

0

You need ~148GB of VRAM to run a 70B unquantised model (16FP). And ~ 48GB to run an INT4 quantised model.

You can see from the logs that 10 out of the 81 layers are in the GPU.

llm_load_tensors: offloading 10 repeating layers to GPU
llm_load_tensors: offloaded 10/81 layers to GPU

The other layers will run in the CPU, and thus the slowness and low GPU use.

I can see that the total model is using ~45GB of ram (5 in the GPU and 40 on the CPU), so I reckon you are running an INT4 quantised model). You can see some of this in the logs you shared

llm_load_tensors:        CPU buffer size = 40543.11 MiB
llm_load_tensors:      CUDA0 buffer size =  5188.75 MiB

To know the amount of memory required multiply the number of parameters by the size of weight.
16FP is 2 bytes so ~ 140GB. INT4 is 0.5 bytes = ~35GB. In practice one needs more than the bare minimum to run the model.

3

Happened to me once, I think you’d need to improve the memory for the 70B model since it requires significantly more GPU memory than the 8B model.

FYI Your RTX 3060 Ti has only 8 GB of VRAM, and the log indicates that only 10 layers of the 70B model are offloaded to the GPU, hence the rest run on the CPU.. Your options are switching to a GPU with bigger RAM or using a smaller model.

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật