When creating an original layer with keras, the connection around it is interrupted

Error description:

There is a phenomenon in which backpropagation is interrupted in a self-made layer called world_vec. When I checked the graph on tensorboard, the original layer was displayed as None and the connection with the subsequent layer was broken. What I expected was displayed in the input section of the original layer, but nothing was displayed in the output section.

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>UserWarning: Gradients do not exist for variables ['kernel', 'bias', 'kernel', 'bias', 'kernel', 'bias', 'gamma', 'beta', 'kernel', 'bias', 'gamma', 'beta', 'kernel', 'bias', 'gamma', 'beta', 'world_vec', 'world_vec'] when minimizing the loss. If using `model.compile()`, did you forget to provide a `loss` argument?
</code>
<code>UserWarning: Gradients do not exist for variables ['kernel', 'bias', 'kernel', 'bias', 'kernel', 'bias', 'gamma', 'beta', 'kernel', 'bias', 'gamma', 'beta', 'kernel', 'bias', 'gamma', 'beta', 'world_vec', 'world_vec'] when minimizing the loss. If using `model.compile()`, did you forget to provide a `loss` argument? </code>
UserWarning: Gradients do not exist for variables ['kernel', 'bias', 'kernel', 'bias', 'kernel', 'bias', 'gamma', 'beta', 'kernel', 'bias', 'gamma', 'beta', 'kernel', 'bias', 'gamma', 'beta', 'world_vec', 'world_vec'] when minimizing the loss. If using `model.compile()`, did you forget to provide a `loss` argument?

Also, when fitting the model, if I set the number of batches to 32, the following error will occur. It is fixed by setting the batch number to 1.

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>Arguments `target` and `output` must have the same shape up until the last dimension: target.shape=(32,), output.shape=(1, 2)
File "C:Usersmnist.py", line 345, in <module>
history = model.fit(x_train, y_train, batch_size=32, epochs=1, callbacks=[tensorboard_callback])
ValueError: Arguments `target` and `output` must have the same shape up until the last dimension: target.shape=(32,), output.shape=(1, 2)
</code>
<code>Arguments `target` and `output` must have the same shape up until the last dimension: target.shape=(32,), output.shape=(1, 2) File "C:Usersmnist.py", line 345, in <module> history = model.fit(x_train, y_train, batch_size=32, epochs=1, callbacks=[tensorboard_callback]) ValueError: Arguments `target` and `output` must have the same shape up until the last dimension: target.shape=(32,), output.shape=(1, 2) </code>
Arguments `target` and `output` must have the same shape up until the last dimension: target.shape=(32,), output.shape=(1, 2)
  File "C:Usersmnist.py", line 345, in <module>
    history = model.fit(x_train, y_train, batch_size=32, epochs=1, callbacks=[tensorboard_callback])
ValueError: Arguments `target` and `output` must have the same shape up until the last dimension: target.shape=(32,), output.shape=(1, 2)

–Explanation of the original layer–

Rather than building something that already exists, I came up with a completely new structure myself. What I created is what is called a world model. It simulates the state of the world using something like memory in LSTM, and then processes the memory with dense to generate an answer.

Original Layer Diagram

If a question gives us new knowledge or a hypothesis, we make changes to the memory (state of the world) accordingly and then simulate the hypothesis or knowledge. If there is a contradiction in the hypothesis, it can be detected. The following code experiments with the mnist dataset

original layer code

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>import tensorflow as tf
import numpy as np
import math
class World_Vec(tf.keras.layers.Layer):
def __init__(self, output_dim):
super().__init__()
self.output_dim = output_dim
self.world_vec = None
self.conditions_vec = None
self.result_vec = None
self.b1 = None
self.b2 = None
self.a = None
self.conditions_vec_size = (10, 10, 10)
                     
self.world_vec_size = (10, 10, 10)
def build(self, input_shape=(2, 10, 10, 10)):
#The condition vector and result vector are in corresponding positions. It is difficult to explain in words, so if you did not understand, please see the diagram
self.world_vec = self.add_weight(name="world_vec", shape=self.world_vec_size)
self.conditions_vec = self.add_weight(name="conditions_vec", shape=self.conditions_vec_size)
self.result_vec = self.add_weight(name="result_vec", shape=self.conditions_vec_size)
self.b = self.add_weight(name="world_vec", shape=(self.conditions_vec_size[1], 1, 1))
self.a = self.add_weight(name="world_vec", shape=(self.conditions_vec_size[1], 1, 1))
def call(self, inputs, **kwargs):
#Apply the hypotheses received in the input to the world vector
#Example of input shape=(2, 10, 10, 10) input.shape[1]=number of hypotheses, input.shape[0]=two because we need a marker and a hypothesis to replace a particular world vector with a hypothesis. Example: if we want to hypothesize that if we drink water, we will get drunk, we need to change the result vector of getting drunk as a landmark to see where we can change the condition vector.
inputs = tf.squeeze(inputs, axis=0)
concatenated = tf.concat([self.world_vec, self.conditions_vec, self.result_vec], 0) #Consolidation to be completed in one go. I thought we could do them separately, but it would be inconvenient during softmax.
#print("aiueo" + str(inputs.shape))
concatenated, tekito1, tekito2 = self.change_world_vec(concatenated, inputs[0], inputs[1])
#print("kakikukeko" + str(concatenated.shape))
world_vec = concatenated[0:self.world_vec_size[0]]
#print(self.world_vec.shape)
conditions_vec = concatenated[self.world_vec_size[0]:self.world_vec_size[0] + self.world_vec_size[0]]
#print(self.conditions_vec.shape)
result_vec = concatenated[self.world_vec_size[0] + self.world_vec_size[0]:]
for i in range(1):
world_vec, conditions_vec, result_vec = self.change_world_vec(world_vec, conditions_vec, result_vec)
return tf.reshape(tf.concat([world_vec, conditions_vec, result_vec], 0), shape=(1, -1))
def softmax(self, logits):
result = []
sumed = np.sum(np.exp(logits))
for i in logits.reshape((-1)):
result.append(np.exp(i))
result = np.array(result).reshape(logits.shape)
return result
def change_world_vec(self, world_vec, conditions_vec, result_vec):
for i in range(self.world_vec.shape[0]):
attention_weight = tf.constant([])
for k in range(self.conditions_vec.shape[0]):
world_vec_temp = tf.transpose(world_vec[i])
conditions_vec_temp = conditions_vec[k]
dot_temp = tf.tensordot(world_vec_temp, conditions_vec_temp, axes=1)
dot_temp = tf.math.reduce_sum(dot_temp)
#Measure the match between the condition vector and the world vector.
normalized_dot = dot_temp/math.sqrt(world_vec.shape[-1]*world_vec.shape[-2])#normalize
attention_weight = tf.keras.ops.append(attention_weight, normalized_dot)
#Extracting from an result vector
attention_weight = tf.nn.softmax(attention_weight)
attention_weight = tf.reshape(attention_weight, (conditions_vec.shape[0], 1, 1))
#print(conditions_vec.shape)
taked_out_result_vec = result_vec * attention_weight
taked_out_result_vec = tf.math.reduce_sum(taked_out_result_vec, axis=0)
#Replace the world vector with the extracted one. First, delete the corresponding part of the world vector, then add it.
erase_attention = tf.ones((conditions_vec.shape[0], 1, 1), dtype=tf.dtypes.float32)
erase_attention = erase_attention - tf.math.sigmoid(self.a * (attention_weight-self.b) + self.b)#Think of self.a(attention_weight-self.b)+self.b as normalization.
erase_attention = tf.math.reduce_sum(erase_attention)
erased_world_vec = world_vec[i] * attention_weight
if i == 0:
changed_world_vec = world_vec[i] + taked_out_result_vec
else:
changed_world_vec = tf.concat([changed_world_vec, world_vec[i] + taked_out_result_vec], axis=0)
return world_vec, conditions_vec, result_vec
</code>
<code>import tensorflow as tf import numpy as np import math class World_Vec(tf.keras.layers.Layer): def __init__(self, output_dim): super().__init__() self.output_dim = output_dim self.world_vec = None self.conditions_vec = None self.result_vec = None self.b1 = None self.b2 = None self.a = None self.conditions_vec_size = (10, 10, 10)                       self.world_vec_size = (10, 10, 10) def build(self, input_shape=(2, 10, 10, 10)): #The condition vector and result vector are in corresponding positions. It is difficult to explain in words, so if you did not understand, please see the diagram self.world_vec = self.add_weight(name="world_vec", shape=self.world_vec_size) self.conditions_vec = self.add_weight(name="conditions_vec", shape=self.conditions_vec_size) self.result_vec = self.add_weight(name="result_vec", shape=self.conditions_vec_size) self.b = self.add_weight(name="world_vec", shape=(self.conditions_vec_size[1], 1, 1)) self.a = self.add_weight(name="world_vec", shape=(self.conditions_vec_size[1], 1, 1)) def call(self, inputs, **kwargs): #Apply the hypotheses received in the input to the world vector #Example of input shape=(2, 10, 10, 10) input.shape[1]=number of hypotheses, input.shape[0]=two because we need a marker and a hypothesis to replace a particular world vector with a hypothesis. Example: if we want to hypothesize that if we drink water, we will get drunk, we need to change the result vector of getting drunk as a landmark to see where we can change the condition vector. inputs = tf.squeeze(inputs, axis=0) concatenated = tf.concat([self.world_vec, self.conditions_vec, self.result_vec], 0) #Consolidation to be completed in one go. I thought we could do them separately, but it would be inconvenient during softmax. #print("aiueo" + str(inputs.shape)) concatenated, tekito1, tekito2 = self.change_world_vec(concatenated, inputs[0], inputs[1]) #print("kakikukeko" + str(concatenated.shape)) world_vec = concatenated[0:self.world_vec_size[0]] #print(self.world_vec.shape) conditions_vec = concatenated[self.world_vec_size[0]:self.world_vec_size[0] + self.world_vec_size[0]] #print(self.conditions_vec.shape) result_vec = concatenated[self.world_vec_size[0] + self.world_vec_size[0]:] for i in range(1): world_vec, conditions_vec, result_vec = self.change_world_vec(world_vec, conditions_vec, result_vec) return tf.reshape(tf.concat([world_vec, conditions_vec, result_vec], 0), shape=(1, -1)) def softmax(self, logits): result = [] sumed = np.sum(np.exp(logits)) for i in logits.reshape((-1)): result.append(np.exp(i)) result = np.array(result).reshape(logits.shape) return result def change_world_vec(self, world_vec, conditions_vec, result_vec): for i in range(self.world_vec.shape[0]): attention_weight = tf.constant([]) for k in range(self.conditions_vec.shape[0]): world_vec_temp = tf.transpose(world_vec[i]) conditions_vec_temp = conditions_vec[k] dot_temp = tf.tensordot(world_vec_temp, conditions_vec_temp, axes=1) dot_temp = tf.math.reduce_sum(dot_temp) #Measure the match between the condition vector and the world vector. normalized_dot = dot_temp/math.sqrt(world_vec.shape[-1]*world_vec.shape[-2])#normalize attention_weight = tf.keras.ops.append(attention_weight, normalized_dot) #Extracting from an result vector attention_weight = tf.nn.softmax(attention_weight) attention_weight = tf.reshape(attention_weight, (conditions_vec.shape[0], 1, 1)) #print(conditions_vec.shape) taked_out_result_vec = result_vec * attention_weight taked_out_result_vec = tf.math.reduce_sum(taked_out_result_vec, axis=0) #Replace the world vector with the extracted one. First, delete the corresponding part of the world vector, then add it. erase_attention = tf.ones((conditions_vec.shape[0], 1, 1), dtype=tf.dtypes.float32) erase_attention = erase_attention - tf.math.sigmoid(self.a * (attention_weight-self.b) + self.b)#Think of self.a(attention_weight-self.b)+self.b as normalization. erase_attention = tf.math.reduce_sum(erase_attention) erased_world_vec = world_vec[i] * attention_weight if i == 0: changed_world_vec = world_vec[i] + taked_out_result_vec else: changed_world_vec = tf.concat([changed_world_vec, world_vec[i] + taked_out_result_vec], axis=0) return world_vec, conditions_vec, result_vec </code>
import tensorflow as tf
import numpy as np
import math


        
                   
class World_Vec(tf.keras.layers.Layer):
    def __init__(self, output_dim):
        super().__init__()
        self.output_dim = output_dim

        self.world_vec = None
        self.conditions_vec = None
        self.result_vec = None
        
        self.b1 = None
        self.b2 = None
        self.a = None

        self.conditions_vec_size = (10, 10, 10)
                     
        self.world_vec_size = (10, 10, 10)
                                  


    def build(self, input_shape=(2, 10, 10, 10)):
        #The condition vector and result vector are in corresponding positions. It is difficult to explain in words, so if you did not understand, please see the diagram

        self.world_vec = self.add_weight(name="world_vec", shape=self.world_vec_size)
        self.conditions_vec = self.add_weight(name="conditions_vec", shape=self.conditions_vec_size)
        self.result_vec = self.add_weight(name="result_vec", shape=self.conditions_vec_size)

        self.b = self.add_weight(name="world_vec", shape=(self.conditions_vec_size[1], 1, 1))
        self.a = self.add_weight(name="world_vec", shape=(self.conditions_vec_size[1], 1, 1))

    

    
    def call(self, inputs, **kwargs):
        #Apply the hypotheses received in the input to the world vector
        #Example of input shape=(2, 10, 10, 10) input.shape[1]=number of hypotheses, input.shape[0]=two because we need a marker and a hypothesis to replace a particular world vector with a hypothesis. Example: if we want to hypothesize that if we drink water, we will get drunk, we need to change the result vector of getting drunk as a landmark to see where we can change the condition vector.
        inputs = tf.squeeze(inputs, axis=0)
        concatenated = tf.concat([self.world_vec, self.conditions_vec, self.result_vec], 0) #Consolidation to be completed in one go. I thought we could do them separately, but it would be inconvenient during softmax.

        #print("aiueo" + str(inputs.shape))

        concatenated, tekito1, tekito2 = self.change_world_vec(concatenated, inputs[0], inputs[1])
        #print("kakikukeko" + str(concatenated.shape))

        world_vec = concatenated[0:self.world_vec_size[0]]
        #print(self.world_vec.shape)
        conditions_vec = concatenated[self.world_vec_size[0]:self.world_vec_size[0] + self.world_vec_size[0]]
        #print(self.conditions_vec.shape)
        result_vec = concatenated[self.world_vec_size[0] + self.world_vec_size[0]:]
        

            
        
        for i in range(1):
            world_vec, conditions_vec, result_vec = self.change_world_vec(world_vec, conditions_vec, result_vec)

        return tf.reshape(tf.concat([world_vec, conditions_vec, result_vec], 0), shape=(1, -1))
        

        
    
    def softmax(self, logits):
        result = []
        sumed = np.sum(np.exp(logits))
        for i in logits.reshape((-1)):
            result.append(np.exp(i))

        result = np.array(result).reshape(logits.shape)

        return result
    
    
    def change_world_vec(self, world_vec, conditions_vec, result_vec):
        for i in range(self.world_vec.shape[0]):
            attention_weight = tf.constant([])
            for k in range(self.conditions_vec.shape[0]):
                
                world_vec_temp = tf.transpose(world_vec[i])
                conditions_vec_temp = conditions_vec[k]

                dot_temp = tf.tensordot(world_vec_temp, conditions_vec_temp, axes=1)
                dot_temp = tf.math.reduce_sum(dot_temp)
                #Measure the match between the condition vector and the world vector.
                
                normalized_dot = dot_temp/math.sqrt(world_vec.shape[-1]*world_vec.shape[-2])#normalize
                                       
                attention_weight = tf.keras.ops.append(attention_weight, normalized_dot)

            



            
            #Extracting from an result vector
            attention_weight = tf.nn.softmax(attention_weight)
            attention_weight = tf.reshape(attention_weight, (conditions_vec.shape[0], 1, 1))
            #print(conditions_vec.shape)
            taked_out_result_vec = result_vec * attention_weight
            taked_out_result_vec = tf.math.reduce_sum(taked_out_result_vec, axis=0)

            #Replace the world vector with the extracted one. First, delete the corresponding part of the world vector, then add it.
            erase_attention = tf.ones((conditions_vec.shape[0], 1, 1), dtype=tf.dtypes.float32)
            erase_attention = erase_attention - tf.math.sigmoid(self.a * (attention_weight-self.b) + self.b)#Think of self.a(attention_weight-self.b)+self.b as normalization.
            erase_attention = tf.math.reduce_sum(erase_attention)

           

            erased_world_vec = world_vec[i] * attention_weight
            if i == 0:
                changed_world_vec = world_vec[i] + taked_out_result_vec

            else:
                changed_world_vec = tf.concat([changed_world_vec, world_vec[i] + taked_out_result_vec], axis=0)
        
        return world_vec, conditions_vec, result_vec
    
    

keras functional api code

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code> h = keras.layers.Dense(2000, activation="relu")(h)
h = keras.layers.BatchNormalization(
axis=-1,
momentum=0.99,
epsilon=0.001,
center=True,
scale=True,
beta_initializer="zeros",
gamma_initializer="ones",
moving_mean_initializer="zeros",
moving_variance_initializer="ones",
beta_regularizer=None,
gamma_regularizer=None,
beta_constraint=None,
gamma_constraint=None,
synchronized=False)(h)
h = keras.layers.Reshape((2, 10, 10, 10))(h)
all_vec = World_Vec(4)(h)
h1 = keras.layers.Dense(64, activation="relu")(all_vec)
h1 = keras.layers.BatchNormalization(
axis=-1,
momentum=0.99,
epsilon=0.001,
center=True,
scale=True,
beta_initializer="zeros",
gamma_initializer="ones",
moving_mean_initializer="zeros",
moving_variance_initializer="ones",
beta_regularizer=None,
gamma_regularizer=None,
beta_constraint=None,
gamma_constraint=None,
synchronized=False)(h1)
#h = keras.layers.Dropout(dropout_rate)(h)
h1 = keras.layers.Dense(64, activation="relu")(h1)
h1 = keras.layers.BatchNormalization(
axis=-1,
momentum=0.99,
epsilon=0.001,
center=True,
scale=True,
beta_initializer="zeros",
gamma_initializer="ones",
moving_mean_initializer="zeros",
moving_variance_initializer="ones",
beta_regularizer=None,
gamma_regularizer=None,
beta_constraint=None,
gamma_constraint=None,
synchronized=False)(h1)
h1 = keras.layers.Dense(64, activation="relu")(h1)
h1 = keras.layers.BatchNormalization(
axis=-1,
momentum=0.99,
epsilon=0.001,
center=True,
scale=True,
beta_initializer="zeros",
gamma_initializer="ones",
moving_mean_initializer="zeros",
moving_variance_initializer="ones",
beta_regularizer=None,
gamma_regularizer=None,
beta_constraint=None,
gamma_constraint=None,
synchronized=False)(h1)
outputs = keras.layers.Dense(2, activation="relu")(h1)
model = keras.Model(inputs=inputs, outputs=outputs, name="mnist_model")
model.summary()
if __name__ == "__main__":
(x_train, y_train_temp), (x_test, y_test_temp) = keras.datasets.mnist.load_data()
print(x_train.shape)
x_train = x_train.reshape(-1, 28, 28, 1).astype("float32") / 255
x_test = x_test.reshape(-1, 28, 28, 1).astype("float32") / 255
print(y_train_temp[1:20])
y_train = []
for i in y_train_temp:
if i == 5:
y_train.append(1)
else:
y_train.append(0)
y_train = np.array(y_train).reshape(-1, )
y_test = []
for i in y_test_temp:
if i == 5:
y_test.append(1)
else:
y_test.append(0)
y_test = np.array(y_test).reshape(-1, )
print(y_test.shape)
model = make_model()
model.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(),
metrics=["accuracy"]
)
logdir = "/logs/fit/" + datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir)
history = model.fit(x_train, y_train, batch_size=1, epochs=1, callbacks=[tensorboard_callback])
</code>
<code> h = keras.layers.Dense(2000, activation="relu")(h) h = keras.layers.BatchNormalization( axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer="zeros", gamma_initializer="ones", moving_mean_initializer="zeros", moving_variance_initializer="ones", beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None, synchronized=False)(h) h = keras.layers.Reshape((2, 10, 10, 10))(h) all_vec = World_Vec(4)(h) h1 = keras.layers.Dense(64, activation="relu")(all_vec) h1 = keras.layers.BatchNormalization( axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer="zeros", gamma_initializer="ones", moving_mean_initializer="zeros", moving_variance_initializer="ones", beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None, synchronized=False)(h1) #h = keras.layers.Dropout(dropout_rate)(h) h1 = keras.layers.Dense(64, activation="relu")(h1) h1 = keras.layers.BatchNormalization( axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer="zeros", gamma_initializer="ones", moving_mean_initializer="zeros", moving_variance_initializer="ones", beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None, synchronized=False)(h1) h1 = keras.layers.Dense(64, activation="relu")(h1) h1 = keras.layers.BatchNormalization( axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer="zeros", gamma_initializer="ones", moving_mean_initializer="zeros", moving_variance_initializer="ones", beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None, synchronized=False)(h1) outputs = keras.layers.Dense(2, activation="relu")(h1) model = keras.Model(inputs=inputs, outputs=outputs, name="mnist_model") model.summary() if __name__ == "__main__": (x_train, y_train_temp), (x_test, y_test_temp) = keras.datasets.mnist.load_data() print(x_train.shape) x_train = x_train.reshape(-1, 28, 28, 1).astype("float32") / 255 x_test = x_test.reshape(-1, 28, 28, 1).astype("float32") / 255 print(y_train_temp[1:20]) y_train = [] for i in y_train_temp: if i == 5: y_train.append(1) else: y_train.append(0) y_train = np.array(y_train).reshape(-1, ) y_test = [] for i in y_test_temp: if i == 5: y_test.append(1) else: y_test.append(0) y_test = np.array(y_test).reshape(-1, ) print(y_test.shape) model = make_model() model.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=keras.optimizers.Adam(), metrics=["accuracy"] ) logdir = "/logs/fit/" + datetime.now().strftime("%Y%m%d-%H%M%S") tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir) history = model.fit(x_train, y_train, batch_size=1, epochs=1, callbacks=[tensorboard_callback]) </code>
    h = keras.layers.Dense(2000, activation="relu")(h)
    h = keras.layers.BatchNormalization(
        axis=-1,
        momentum=0.99,
        epsilon=0.001,
        center=True,
        scale=True,
        beta_initializer="zeros",
        gamma_initializer="ones",
        moving_mean_initializer="zeros",
        moving_variance_initializer="ones",
        beta_regularizer=None,
        gamma_regularizer=None,
        beta_constraint=None,
        gamma_constraint=None,
        synchronized=False)(h)
    
    h = keras.layers.Reshape((2, 10, 10, 10))(h)
    
    all_vec = World_Vec(4)(h)

    h1 = keras.layers.Dense(64, activation="relu")(all_vec)
    h1 = keras.layers.BatchNormalization(
        axis=-1,
        momentum=0.99,
        epsilon=0.001,
        center=True,
        scale=True,
        beta_initializer="zeros",
        gamma_initializer="ones",
        moving_mean_initializer="zeros",
        moving_variance_initializer="ones",
        beta_regularizer=None,
        gamma_regularizer=None,
        beta_constraint=None,
        gamma_constraint=None,
        synchronized=False)(h1)


    #h = keras.layers.Dropout(dropout_rate)(h)
    h1 = keras.layers.Dense(64, activation="relu")(h1)

    h1 = keras.layers.BatchNormalization(
        axis=-1,
        momentum=0.99,
        epsilon=0.001,
        center=True,
        scale=True,
        beta_initializer="zeros",
        gamma_initializer="ones",
        moving_mean_initializer="zeros",
        moving_variance_initializer="ones",
        beta_regularizer=None,
        gamma_regularizer=None,
        beta_constraint=None,
        gamma_constraint=None,
        synchronized=False)(h1)
    
    h1 = keras.layers.Dense(64, activation="relu")(h1)
    h1 = keras.layers.BatchNormalization(
        axis=-1,
        momentum=0.99,
        epsilon=0.001,
        center=True,
        scale=True,
        beta_initializer="zeros",
        gamma_initializer="ones",
        moving_mean_initializer="zeros",
        moving_variance_initializer="ones",
        beta_regularizer=None,
        gamma_regularizer=None,
        beta_constraint=None,
        gamma_constraint=None,
        synchronized=False)(h1)
    outputs = keras.layers.Dense(2, activation="relu")(h1)

    model = keras.Model(inputs=inputs, outputs=outputs, name="mnist_model")
    model.summary()


if __name__ == "__main__":
    (x_train, y_train_temp), (x_test, y_test_temp) = keras.datasets.mnist.load_data()
    print(x_train.shape)
    x_train = x_train.reshape(-1, 28, 28, 1).astype("float32") / 255
    x_test = x_test.reshape(-1, 28, 28, 1).astype("float32") / 255

    print(y_train_temp[1:20])

    y_train = []

    for i in y_train_temp:
        if i == 5:
            y_train.append(1)
            
            
        else:
            y_train.append(0)
            
    y_train = np.array(y_train).reshape(-1, )
    y_test = []

    for i in y_test_temp:
        if i == 5:
            y_test.append(1)
            
        else:
            y_test.append(0)
    y_test = np.array(y_test).reshape(-1, )


    print(y_test.shape)

    model = make_model()
    model.compile(
        loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
        optimizer=keras.optimizers.Adam(),
        metrics=["accuracy"]
    )

    logdir = "/logs/fit/" + datetime.now().strftime("%Y%m%d-%H%M%S")

    tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir)

    history = model.fit(x_train, y_train, batch_size=1, epochs=1, callbacks=[tensorboard_callback])

The state of the world is expressed in terms of weights, but I thought it was wrong to mess with the weights, so I copied the weights to another variable and then did it.

New contributor

kurorekishi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật