from tensorflow.keras.layers import Layer
from tensorflow.keras import backend as K
class Attention(Layer):
def __init__(self, return_sequences=True):
self.return_sequences = return_sequences
super(Attention,self).__init__()
def build(self, input_shape):
self.W=self.add_weight(name="att_weight", shape=(input_shape[-1],1),
initializer="normal")
self.b=self.add_weight(name="att_bias", shape=(input_shape[1],1),
initializer="zeros")
super(Attention,self).build(input_shape)
def call(self, x):
e = K.tanh(K.dot(x,self.W)+self.b)
a = K.softmax(e, axis=1)
output = x*a
if self.return_sequences:
return output
return K.sum(output, axis=1)
calling this with in CNN block with this:
Attention()[x,x] where x in output of previous layer
need architectural diagram of this code
New contributor
ANSHU SINGH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.