ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all() when training CrossEncoder

I’m (more or less) following the Training_quora_duplicate_questions.py example using my own data.

As I understood from the cross encoder page, and I quote:

For binary tasks and tasks with continuous scores (like STS), we set num_labels=1. For classification tasks, we set it to the number of labels we have.

As such I’ve written the model thusly:

model = CrossEncoder("distilroberta-base", num_labels= 2)

and the evaluator thusly:

evaluator = CEBinaryClassificationEvaluator.from_input_examples(dev_examples, name= "Rooms-dev")

Yet, when I run the code as soon as it tries to evaluate for the first time it gives the following error:

ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

I tried the same code before but with num_labels=1 and the it worked, ‘though isn’t (I think) quite what I’d like since I want to model to predict either 0 or 1 and not a continuous from 0 to 1.

Any ideia what might be causing this?

Code and error message below:

# extracting rooms & labels into lists
rooms_1 = rooms_df["room_ner1"].tolist()
rooms_2 = rooms_df["room_ner2"].tolist()
labels = rooms_df["label"].tolist()

# creating array of room-pairs
dataset = [
    [original, candidate, label]
    for original, candidate, label
    in zip(rooms_1, rooms_2, labels)
]

random.shuffle(dataset)

dev_sample_size = int(len(dataset) * 0.10)

dev_data = dataset[: dev_sample_size]
train_data = dataset[dev_sample_size: ]

# preparing training dataset
train_examples = list()
n_examples = len(train_data)

# creating training dataset
for i in trange(n_examples):
    example = train_data[i]
    train_examples.append(InputExample(texts= [example[0], example[1]], label= example[2]))
    train_examples.append(InputExample(texts= [example[1], example[0]], label= example[2]))

# preparing test dataset
dev_examples = list()
d_examples = len(dev_data)

# creating test dataset
for i in trange(d_examples):
    example = dev_data[i]
    dev_examples.append(InputExample(texts= [example[0], example[1]], label= example[2]))

train_batch_size = 16
num_epochs = 4
model_save_path = "output/training_rooms-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S")

model = CrossEncoder("distilroberta-base", num_labels= 2)#, device= "mps")

train_dataloader = DataLoader(
    train_examples, 
    shuffle= True,
    batch_size= train_batch_size
)

evaluator = CEBinaryClassificationEvaluator.from_input_examples(dev_examples, name= "Rooms-dev") 

warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% train data for warm-up
logger.info(f"Warmup-steps: {warmup_steps:_}")

model.fit(
    train_dataloader= train_dataloader,
    evaluator= evaluator,
    epochs= num_epochs,
    evaluation_steps= 5_000,
    warmup_steps= warmup_steps,
    output_path= model_save_path
)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[67], [line 1](vscode-notebook-cell:?execution_count=67&line=1)
----> [1](vscode-notebook-cell:?execution_count=67&line=1) model.fit(
      [2](vscode-notebook-cell:?execution_count=67&line=2)     train_dataloader= train_dataloader,
      [3](vscode-notebook-cell:?execution_count=67&line=3)     evaluator= evaluator,
      [4](vscode-notebook-cell:?execution_count=67&line=4)     epochs= num_epochs,
      [5](vscode-notebook-cell:?execution_count=67&line=5)     evaluation_steps= 5_000,
      [6](vscode-notebook-cell:?execution_count=67&line=6)     warmup_steps= warmup_steps,
      [7](vscode-notebook-cell:?execution_count=67&line=7)     output_path= model_save_path
      [8](vscode-notebook-cell:?execution_count=67&line=8) )

File [~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/CrossEncoder.py:275](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/CrossEncoder.py:275), in CrossEncoder.fit(self, train_dataloader, evaluator, epochs, loss_fct, activation_fct, scheduler, warmup_steps, optimizer_class, optimizer_params, weight_decay, evaluation_steps, output_path, save_best_model, max_grad_norm, use_amp, callback, show_progress_bar)
    [272](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/CrossEncoder.py:272) training_steps += 1
    [274](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/CrossEncoder.py:274) if evaluator is not None and evaluation_steps > 0 and training_steps % evaluation_steps == 0:
--> [275](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/CrossEncoder.py:275)     self._eval_during_training(
    [276](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/CrossEncoder.py:276)         evaluator, output_path, save_best_model, epoch, training_steps, callback
    [277](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/CrossEncoder.py:277)     )
    [279](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/CrossEncoder.py:279)     self.model.zero_grad()
    [280](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/CrossEncoder.py:280)     self.model.train()

File [~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/CrossEncoder.py:450](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/CrossEncoder.py:450), in CrossEncoder._eval_during_training(self, evaluator, output_path, save_best_model, epoch, steps, callback)
    [448](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/CrossEncoder.py:448) """Runs evaluation during the training"""
    [449](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/CrossEncoder.py:449) if evaluator is not None:
--> [450](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/CrossEncoder.py:450)     score = evaluator(self, output_path=output_path, epoch=epoch, steps=steps)
    [451](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/CrossEncoder.py:451)     if callback is not None:
    [452](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/CrossEncoder.py:452)         callback(score, epoch, steps)

File [~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/evaluation/CEBinaryClassificationEvaluator.py:81](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/evaluation/CEBinaryClassificationEvaluator.py:81), in CEBinaryClassificationEvaluator.__call__(self, model, output_path, epoch, steps)
     [76](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/evaluation/CEBinaryClassificationEvaluator.py:76) logger.info("CEBinaryClassificationEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt)
     [77](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/evaluation/CEBinaryClassificationEvaluator.py:77) pred_scores = model.predict(
     [78](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/evaluation/CEBinaryClassificationEvaluator.py:78)     self.sentence_pairs, convert_to_numpy=True, show_progress_bar=self.show_progress_bar
     [79](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/evaluation/CEBinaryClassificationEvaluator.py:79) )
---> [81](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/evaluation/CEBinaryClassificationEvaluator.py:81) acc, acc_threshold = BinaryClassificationEvaluator.find_best_acc_and_threshold(pred_scores, self.labels, True)
     [82](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/evaluation/CEBinaryClassificationEvaluator.py:82) f1, precision, recall, f1_threshold = BinaryClassificationEvaluator.find_best_f1_and_threshold(
     [83](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/evaluation/CEBinaryClassificationEvaluator.py:83)     pred_scores, self.labels, True
     [84](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/evaluation/CEBinaryClassificationEvaluator.py:84) )
     [85](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/cross_encoder/evaluation/CEBinaryClassificationEvaluator.py:85) ap = average_precision_score(self.labels, pred_scores)

File [~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/evaluation/BinaryClassificationEvaluator.py:226](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/evaluation/BinaryClassificationEvaluator.py:226), in BinaryClassificationEvaluator.find_best_acc_and_threshold(scores, labels, high_score_more_similar)
    [223](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/evaluation/BinaryClassificationEvaluator.py:223) assert len(scores) == len(labels)
    [224](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/evaluation/BinaryClassificationEvaluator.py:224) rows = list(zip(scores, labels))
--> [226](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/evaluation/BinaryClassificationEvaluator.py:226) rows = sorted(rows, key=lambda x: x[0], reverse=high_score_more_similar)
    [228](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/evaluation/BinaryClassificationEvaluator.py:228) max_acc = 0
    [229](https://file+.vscode-resource.vscode-cdn.net/Users/duarteharris/IronHack/GitHub/room-matching/~/IronHack/GitHub/room-matching/.venv/lib/python3.11/site-packages/sentence_transformers/evaluation/BinaryClassificationEvaluator.py:229) best_threshold = -1

ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

Thank you in advance for any help.

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật