I am building a RAG application using Groq API, langchain and Streamlit. It uses OllamaEmbeddings for embedding the text and Groq as the large language model. Here is the code:
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.embeddings import OllamaEmbeddings
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain_groq import ChatGroq
from htmlTemplates import css, bot_template, user_template
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
embeddings = OllamaEmbeddings(model='nomic-embed-text')
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def get_conversation_chain(vectorstore):
llm = ChatGroq(model="mixtral-8x7b-32768")
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv()
st.set_page_config(page_title="Chat with PDFs", page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with PDFs :books:")
user_question = st.text_input("Ask a question about your document:")
if user_question:
handle_userinput(user_question)
st.write(user_template.replace("{{MSG}}", "Hello"), unsafe_allow_html=True)
st.write(bot_template.replace("{{MSG}}", "Hello"), unsafe_allow_html=True)
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader("Upload your PDF here and click on Process", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
# Get pdf text
raw_text = get_pdf_text(pdf_docs)
# Get text chunks
text_chunks = get_text_chunks(raw_text)
# Create vector store
vector_store = get_vectorstore(text_chunks)
# Create conversation chain
st.session_state.conversation = get_conversation_chain(vector_store)
if __name__ == '__main__':
main()
It generates the following error when I try to process the pdf document:
ValidationError: 1 validation error for LLMChain llm Can't instantiate abstract class BaseLanguageModel with abstract methods agenerate_prompt, apredict, apredict_messages, generate_prompt, predict, predict_messages (type=type_error)
Traceback:
File "D:DeerwalkSEM VIProject IIGroqvenvLibsite-packagesstreamlitruntimescriptrunnerscript_runner.py", line 589, in _run_script
exec(code, module.__dict__)
File "D:DeerwalkSEM VIProject IIGroqapp1.py", line 93, in <module>
main()
File "D:DeerwalkSEM VIProject IIGroqapp1.py", line 90, in main
st.session_state.conversation = get_conversation_chain(vector_store)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:DeerwalkSEM VIProject IIGroqapp1.py", line 39, in get_conversation_chain
conversation_chain = ConversationalRetrievalChain.from_llm(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:DeerwalkSEM VIProject IIGroqvenvLibsite-packageslangchainchainsconversational_retrievalbase.py", line 213, in from_llm
doc_chain = load_qa_chain(
^^^^^^^^^^^^^^
File "D:DeerwalkSEM VIProject IIGroqvenvLibsite-packageslangchainchainsquestion_answering__init__.py", line 238, in load_qa_chain
return loader_mapping[chain_type](
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:DeerwalkSEM VIProject IIGroqvenvLibsite-packageslangchainchainsquestion_answering__init__.py", line 70, in _load_stuff_chain
llm_chain = LLMChain(
^^^^^^^^^
File "D:DeerwalkSEM VIProject IIGroqvenvLibsite-packageslangchainloadserializable.py", line 64, in __init__
super().__init__(**kwargs)
File "pydanticmain.py", line 341, in pydantic.main.BaseModel.__init__
I am new to this. So, I don’t know what to try and couldn’t find helpful resources online.
New contributor
Pranaya Shrestha is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.