class some_class():
def __init__(self,engine_kwargs: dict = None):
self.distributed = engine_kwargs.get("distributed", False)
self.dask_client = None
self.n_workers = engine_kwargs.get(
"n_workers", int(os.getenv("SLURM_CPUS_PER_TASK", os.cpu_count()))
)
@contextmanager
def dask_context(self):
"""Dask context manager to set up and close down client"""
if self.distributed:
if self.distributed_mode == "processes":
processes = True
dask_cluster = LocalCluster(n_workers=self.n_workers, processes=processes)
dask_client = Client(self.dask_cluster)
try:
yield
finally:
if dask_client is not None:
dask_client.close()
local_cluster.close()
And I have something like the following method:
def correct(self,
segy_container: "SegyFileContainer",
v_sb: int,
interp_type: int = 1,
brute_downsample: int = None,)
""""
:param segy_container: Container for the seg-y path and data
:type segy_container: SegyFileContainer
:param interp_type: Interpolation type either 1=linear or 3=cubic, defaults to 1
:type interp_type: int, optional
:param brute_downsample: If you wish to down sample the data to get a brute stack, defaults to None
:type brute_downsample: int, optional
:param v_sb: NMO velocity, defaults to 1500
:type v_sb: int, optional
:return: NMO corrected gather
:rtype: pd.DataFrame
"""
min_cmp = segy_container.trace_headers["CDP"].values.min()
max_cmp = segy_container.trace_headers["CDP"].values.max()
groups = segy_container.trace_headers["CDP"]
cdp_series = segy_container.trace_headers["CDP"]
cdp_dataarray = xr.DataArray(cdp_series, dims=["trace"])
dg_cmp = segy_container.segy_file.data.groupby(cdp_dataarray)
dt_s = segy_container.segy_file.attrs["sample_rate"]
hg_cmp = segy_container.trace_headers.groupby(
segy_container.trace_headers["CDP"]
)
segy_container.trace_headers["CDP"].iloc[hg_cmp.indices.get(100)]
tasks = [
delayed(self._process_group)(
segy_container, cmp_index, dg_cmp, hg_cmp, v_sb, interp_type, dt_s
)
for cmp_index in range(min_cmp, max_cmp + 1)
]
with self.dask_context() as dc:
results = compute(*tasks, scheduler=dc)
def _process_group(
self,
segy_container,
cmp_index,
dg_cmp,
hg_cmp,
v_sb: int,
interp_type: int,
dt_s: int,
):
cmp = (
segy_container.segy_file.data[dg_cmp.groups[cmp_index]]
.transpose()
.compute()
)
offsets = hg_cmp.get_group(cmp_index)["offset"]
nmo = self._nmo_correction(
cmp=cmp,
dt=dt_s / 1000,
offsets=offsets,
velocity=v_sb,
interp_type=interp_type,
)
return nmo
def _nmo_correction(
self, cmp, dt: float, offsets, velocity: float, interp_type: int
):
nmo_trace = da.zeros_like(cmp)
nsamples = cmp.data.shape[0]
times = da.arange(0, nsamples * dt, dt)
for ind, offset in enumerate(offsets):
reflected_times = self._reflection_time(times, offset, velocity)
amplitude = self._sample_trace(
reflected_times=reflected_times,
trace=cmp.data[:, ind],
dt=dt,
interp_type=interp_type,
)
if amplitude is not None:
nmo_trace[:, ind] = amplitude
return nmo_trace
def _reflection_time(self, t0, x, vnmo):
t = da.sqrt(t0**2 + x**2 / vnmo**2)
return t.compute()
def _sample_trace(self, reflected_times, trace, dt, interp_type):
times = np.arange(trace.size) * dt
times = xr.DataArray(times)
reflected_times = xr.DataArray(reflected_times, dims="reflected_times")
out_of_bounds = (reflected_times < times[0]) | (reflected_times > times[-1])
if interp_type == 1:
amplitude = np.interp(reflected_times, times, trace)
elif interp_type == 3:
polyfit = CubicSpline(times, trace)
amplitude = polyfit(reflected_times)
else:
raise ValueError(
f"Error in interpolating sample trace. interp_type should be either 1 or 3: {interp_type}"
)
amplitude[out_of_bounds.compute()] = 0.0
return amplitude
I have the same thing implemented using numpy and pandas, and the runtime is 3 secs. For Dask-distributed in the way shown it is taking around 15 mins. If I just use scheduler=processes
and not the cluster it takes about 4 mins.
I understand there will be overhead in setting up and using the cluster, but am trying to understand how to improve the run time.
Looking at the diagnostics in the Dask dash give some quite confusing graphs:
I understand why there maybe more streams than the 10 workers I have created in this case, but am finding it hard to understand what exactly is going on here. I also dont understand why the memory usage is so high – as the file I am looking at is 715 Mb.
Any advice or insight on how to
- Understand the task stream
- Speed up the Dask-distributed code
- Understand why the memory usage is so high
Would be very much appreciated!