TypeError: Could not convert [‘CIN’] to numeric

I know this is a common question and have read through many of them. However, they don’t address my specific situation, so this is a variation of that question, as I’ll explain.

I’m new to Python, having only taken a single online class with MIT. But I’m a learn-as-you-go person, so I begin with other people’s code, modify for my specific needs, research and modify as necessary, and remember that for future use.

I’m having an issue with finding a solution to a problem I’m experiencing with a section of a Python script. I’ll post a picture of the error here as a snapshot of what’s happening, but will follow that up with any appropriate code, what I’ve tried, etc.

enter image description here

This section of the code is building a list of the five most recent games (“matches”) from each of the 32 NFL Teams. It’s drawing from a table in the format of 26 columns by 7,678 rows. Column headers are as follows:

[‘Date’, ‘Name’, ‘PointsScored’, ‘Pass_Attempts’, ‘Passes_Comp’, ‘Pass_Yards’, ‘Pass_Int’, ‘Sacks’, ‘Sack_Yards’, ‘Rush_Attempts’, ‘Rush_Yards’, ‘Penalties’, ‘Penalty_Yards’, ‘Result’, ‘PointsScored’, ‘Pass_Attempts’, ‘Passes_Comp’, ‘Pass_Yards’, ‘Pass_Int’, ‘Sacks’, ‘Sack_Yards’, ‘Rush_Attempts’, ‘Rush_Yards’, ‘Penalties’, ‘Penalty_Yards’, ‘home_or_away’]

Each row is a listing of performance metrics along with comparable statistics for each of the two teams in the game. I can provide more detail on the fields if necessary.

I searched numerous forums for a solution, but couldn’t find any that were specific enough to what I was experiencing to make use of any of them. What I believe makes my question unique is that I WANT to use ‘CIN’ as a string (it’s stored in the ‘Name” field in the table), and not a numeric value. It’s one of the team abbreviations, so it’s necessary for what I want to accomplish.

As I was working through the code, I ran into a similar error (in the same line of code), however that instance was related to the “Date” field. After some research, I realized that the dates in my imported CSV were in the format of dd/mm/yy, which the code wouldn’t accept. I suspect the “/” were the problem (but I’m not sure). So I converted the dates to an actual number and that solved that one (but again, I don’t know why). But now I’m seeing the error above. I reviewed the CSV for any anomalies and found none. I also tried loc in place of iloc, and got the same error.

However I DO know that the WASWASWAS…. in the error message are a concatenation of team abbreviations for “WAShington”. The import source is built using a three-character code rather than the entire team name throughout. In the code below, I highlighted the code in question between two double lines of quote marks (#).

I want to add the CSV for testing, but am uncertain how to attach a file. In a previous question, I was told NOT to include links, so I won’t use that here. So if someone can tell me how to add a file, please do so.

I’ll add as much code as I think is necessary, but it will be limited to what’s currently working. I don’t believe there’s anything later in the code that’s relevant, and when I tried to add the entire script before this one, I couldn’t post it because the editor said it “looked like spam.” But I can provide anything you want if someone let’s me know how.

As mentioned, I resolved a similar error by figuring finding a workaround for the date format issue. I went through the source data thoroughly to assure there were no errors, typos, incorrect character types, etc. I also read quite a few posts on this error but, as I said, they all pertained to converting TO numeric, rather than using a string value as-is.

Following is the code up to the line that’s failing. The very last line is where it fails.

import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score

# TEAM FEATURE EXTRACTION

# Load the datasets for the 2023 and 2024 seasons that include a "HomeWon" column.
# This column indicates if the home team won the game (1 for win, 0 for loss).

# (Right click source files to get the path and paste them within the quotes below)
data_2023_updated = pd.read_csv(r"C:UsersrichaPythonFootballMy_NFL_Forecaster2023.csv")
data_2024_updated = pd.read_csv(r"C:UsersrichaPythonFootballMy_NFL_Forecaster2024.csv")
#all_data = pd.read_csv(r"/Users/richardcartier/Documents/PythonProjects/My_NFL_Forecaster/MYSource.csv")

# Load the dataset containing the upcoming games schedule.
upcoming_games = pd.read_csv(r"C:UsersrichaPythonFootballMy_NFL_ForecasterThis_Weeks_Schedule.csv")

# Combine the data from the 2023 and 2024 seasons into a single DataFrame.
all_data = pd.concat([data_2023_updated, data_2024_updated])
#print(all_data)

# Now extract columns from the source csv file
raw_match_stats = all_data[[
'Date',
'Season',
'Week',
'Visitor',
'Home',
'Visitor_Score',
'Visitor_Pass_Att',
'Visitor_Pass_Comp', 
'Visitor_Pass_Yds',
'Visitor_Pass_TD',
'Visitor_Pass_Int',
'Visitor_Sacks',
'Visitor_Sack_Yds',
'Visitor_Rush_Att',
'Visitor_Rush_Yds',
'Visitor_Rush_TD',
'Visitor_Pen',
'Visitor_Pen_Yds',
'Visitor_Won',
'Visitor_Line',
'Visitor_Covered',
'Home_Score',
'Home_Pass_Att',
'Home_Pass_Comp', 
'Home_Pass_Yds',
'Home_Pass_TD',
'Home_Pass_Int',
'Home_Sacks',
'Home_Sack_Yds',
'Home_Rush_Att',
'Home_Rush_Yds',
'Home_Rush_TD',
'Home_Pen',
'Home_Pen_Yds',
'Home_Won',
'Home_Line',
'Home_Covered',
'OU_Line',
'OU_Result'
]]

# Determine number of Wins, Losses and Ties
 
raw_match_stats.loc[raw_match_stats['Home_Score'] == raw_match_stats['Visitor_Score'], 'home_team_result'] = 0
raw_match_stats.loc[raw_match_stats['Home_Score'] > raw_match_stats['Visitor_Score'], 'home_team_result'] = 1
raw_match_stats.loc[raw_match_stats['Home_Score'] < raw_match_stats['Visitor_Score'], 'home_team_result'] = -1

raw_match_stats.loc[raw_match_stats['Home_Score'] == raw_match_stats['Visitor_Score'], 'away_team_result'] = 0
raw_match_stats.loc[raw_match_stats['Home_Score'] > raw_match_stats['Visitor_Score'], 'away_team_result'] = 1
raw_match_stats.loc[raw_match_stats['Home_Score'] < raw_match_stats['Visitor_Score'], 'away_team_result'] = -1


# Split the raw_match_stats to two datasets (home_team_stats and away_team_stats)
home_team_stats = raw_match_stats[[
'Date',
'Home',
'Home_Score',
'Home_Pass_Att',
'Home_Pass_Comp', 
'Home_Pass_Yds',
'Home_Pass_TD',
'Home_Pass_Int',
'Home_Sacks',
'Home_Sack_Yds',
'Home_Rush_Att',
'Home_Rush_Yds',
'Home_Rush_TD',
'Home_Pen',
'Home_Pen_Yds',
'Home_Won',
'Visitor_Score',
'Visitor_Pass_Att',
'Visitor_Pass_Comp', 
'Visitor_Pass_Yds',
'Visitor_Pass_TD',
'Visitor_Pass_Int',
'Visitor_Sacks',
'Visitor_Sack_Yds',
'Visitor_Rush_Att',
'Visitor_Rush_Yds',
'Visitor_Rush_TD',
'Visitor_Pen',
'Visitor_Pen_Yds',
'Visitor_Won'
]]

home_team_stats = home_team_stats.rename(columns={'Home':'Name',
                                                'Home_Score':'Points_Scored',
                                                'Home_Pass_Att':'Pass_Attempts',
                                                'Home_Pass_Comp':'Passes_Comp',
                                                'Home_Pass_Yds':'Pass_Yards',
                                                'Home_Pass_TD':'Pass_TD',
                                                'Home_Pass_Int':'Pass_Int',
                                                'Home_Sacks':'Sacks',
                                                'Home_Sack_Yds':'Sack_Yards',
                                                'Home_Rush_Att':'Rush_Attempts',
                                                'Home_Rush_Yds':'Rush_Yards',
                                                'Home_Rush_TD':'Rush_TD',
                                                'Home_Pen':'Penalties',
                                                'Home_Pen_Yds':'Penalty_Yards',
                                                'Home_Won':'Result',
                                                'Visitor_Score':'Points_Scored',
                                                'Visitor_Pass_Att':'Pass_Attempts',
                                                'Visitor_Pass_Comp':'Passes_Comp',
                                                'Visitor_Pass_Yds':'Pass_Yards',
                                                'Visitor_Pass_TD':'Pass_TD',
                                                'Visitor_Pass_Int':'Pass_Int',
                                                'Visitor_Sacks':'Sacks',
                                                'Visitor_Sack_Yds':'Sack_Yards',
                                                'Visitor_Rush_Att':'Rush_Attempts',
                                                'Visitor_Rush_Yds':'Rush_Yards',
                                                'Visitor_Rush_TD':'Rush_TD',
                                                'Visitor_Pen':'Penalties',
                                                'Visitor_Pen_Yds':'Penalty_Yards',
                                                'Visitor_Won':'Result'
})


away_team_stats = raw_match_stats[[
'Date',
'Visitor',
'Visitor_Score',
'Visitor_Pass_Att',
'Visitor_Pass_Comp', 
'Visitor_Pass_Yds',
'Visitor_Pass_TD',
'Visitor_Pass_Int',
'Visitor_Sacks',
'Visitor_Sack_Yds',
'Visitor_Rush_Att',
'Visitor_Rush_Yds',
'Visitor_Rush_TD',
'Visitor_Pen',
'Visitor_Pen_Yds',
'Visitor_Won',
'Home_Score',
'Home_Pass_Att',
'Home_Pass_Comp', 
'Home_Pass_Yds',
'Home_Pass_TD',
'Home_Pass_Int',
'Home_Sacks',
'Home_Sack_Yds',
'Home_Rush_Att',
'Home_Rush_Yds',
'Home_Rush_TD',
'Home_Pen',
'Home_Pen_Yds',
'Home_Won'
]]

away_team_stats = away_team_stats.rename(columns={'Visitor':'Name',
                                                'Visitor_Score':'Points_Scored',
                                                'Visitor_Pass_Att':'Pass_Attempts',
                                                'Visitor_Pass_Comp':'Passes_Comp',
                                                'Visitor_Pass_Yds':'Pass_Yards',
                                                'Visitor_Pass_TD':'Pass_TD',
                                                'Visitor_Pass_Int':'Pass_Int',
                                                'Visitor_Sacks':'Sacks',
                                                'Visitor_Sack_Yds':'Sack_Yards',
                                                'Visitor_Rush_Att':'Rush_Attempts',
                                                'Visitor_Rush_Yds':'Rush_Yards',
                                                'Visitor_Rush_TD':'Rush_TD',
                                                'Visitor_Pen':'Penalties',
                                                'Visitor_Pen_Yds':'Penalty_Yards',
                                                'Visitor_Won':'Result',
                                                'Home_Score':'Points_Scored',
                                                'Home_Pass_Att':'Pass_Attempts',
                                                'Home_Pass_Comp':'Passes_Comp',
                                                'Home_Pass_Yds':'Pass_Yards',
                                                'Home_Pass_TD':'Pass_TD',
                                                'Home_Pass_Int':'Pass_Int',
                                                'Home_Sacks':'Sacks',
                                                'Home_Sack_Yds':'Sack_Yards',
                                                'Home_Rush_Att':'Rush_Attempts',
                                                'Home_Rush_Yds':'Rush_Yards',
                                                'Home_Rush_TD':'Rush_TD',
                                                'Home_Pen':'Penalties',
                                                'Home_Pen_Yds':'Penalty_Yards',
                                                'Home_Won':'Result'
})

# add an additional column to denote whether the team is playing at home or away - this will help us later
home_team_stats['home_or_away']= 1
away_team_stats['home_or_away']= 0

# stack these two datasets so that each row is the stats for a team for one match (team_stats_per_match)
team_stats_per_match = pd.concat([home_team_stats,away_team_stats])
print(team_stats_per_match)
print(team_stats_per_match.columns.tolist())

# Export the predictions to a CSV file
team_stats_per_match.to_csv('predictions.csv', index=False)

# At each row of this dataset, get the team name, find the stats for that team during the last 10 games, and average these stats (avg_stats_per_team). 
avg_stat_columns = ['points_per_game','pass_att_per_game','pass_comp_per_game','pass_yds_per_game','rush_att_per_game', 'rush_yds_per_game']
stats_list = []
for index, row in team_stats_per_match.iterrows():
    team_stats_last_five_matches = team_stats_per_match.loc[(team_stats_per_match['Name']==row['Name']) & (team_stats_per_match['Date']<row['Date'])].sort_values(by=['Date'], ascending=False)
    # A Pandas axis refers to the data in rows (axis = 1) or columns (axis = 0)
    stats_list.append(team_stats_last_five_matches.iloc[0:5,:].mean(axis=0).values[0:6])

2

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa

TypeError: Could not convert [‘CIN’] to numeric

I know this is a common question and have read through many of them. However, they don’t address my specific situation, so this is a variation of that question, as I’ll explain.

I’m new to Python, having only taken a single online class with MIT. But I’m a learn-as-you-go person, so I begin with other people’s code, modify for my specific needs, research and modify as necessary, and remember that for future use.

I’m having an issue with finding a solution to a problem I’m experiencing with a section of a Python script. I’ll post a picture of the error here as a snapshot of what’s happening, but will follow that up with any appropriate code, what I’ve tried, etc.

enter image description here

This section of the code is building a list of the five most recent games (“matches”) from each of the 32 NFL Teams. It’s drawing from a table in the format of 26 columns by 7,678 rows. Column headers are as follows:

[‘Date’, ‘Name’, ‘PointsScored’, ‘Pass_Attempts’, ‘Passes_Comp’, ‘Pass_Yards’, ‘Pass_Int’, ‘Sacks’, ‘Sack_Yards’, ‘Rush_Attempts’, ‘Rush_Yards’, ‘Penalties’, ‘Penalty_Yards’, ‘Result’, ‘PointsScored’, ‘Pass_Attempts’, ‘Passes_Comp’, ‘Pass_Yards’, ‘Pass_Int’, ‘Sacks’, ‘Sack_Yards’, ‘Rush_Attempts’, ‘Rush_Yards’, ‘Penalties’, ‘Penalty_Yards’, ‘home_or_away’]

Each row is a listing of performance metrics along with comparable statistics for each of the two teams in the game. I can provide more detail on the fields if necessary.

I searched numerous forums for a solution, but couldn’t find any that were specific enough to what I was experiencing to make use of any of them. What I believe makes my question unique is that I WANT to use ‘CIN’ as a string (it’s stored in the ‘Name” field in the table), and not a numeric value. It’s one of the team abbreviations, so it’s necessary for what I want to accomplish.

As I was working through the code, I ran into a similar error (in the same line of code), however that instance was related to the “Date” field. After some research, I realized that the dates in my imported CSV were in the format of dd/mm/yy, which the code wouldn’t accept. I suspect the “/” were the problem (but I’m not sure). So I converted the dates to an actual number and that solved that one (but again, I don’t know why). But now I’m seeing the error above. I reviewed the CSV for any anomalies and found none. I also tried loc in place of iloc, and got the same error.

However I DO know that the WASWASWAS…. in the error message are a concatenation of team abbreviations for “WAShington”. The import source is built using a three-character code rather than the entire team name throughout. In the code below, I highlighted the code in question between two double lines of quote marks (#).

I want to add the CSV for testing, but am uncertain how to attach a file. In a previous question, I was told NOT to include links, so I won’t use that here. So if someone can tell me how to add a file, please do so.

I’ll add as much code as I think is necessary, but it will be limited to what’s currently working. I don’t believe there’s anything later in the code that’s relevant, and when I tried to add the entire script before this one, I couldn’t post it because the editor said it “looked like spam.” But I can provide anything you want if someone let’s me know how.

As mentioned, I resolved a similar error by figuring finding a workaround for the date format issue. I went through the source data thoroughly to assure there were no errors, typos, incorrect character types, etc. I also read quite a few posts on this error but, as I said, they all pertained to converting TO numeric, rather than using a string value as-is.

Following is the code up to the line that’s failing. The very last line is where it fails.

import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score

# TEAM FEATURE EXTRACTION

# Load the datasets for the 2023 and 2024 seasons that include a "HomeWon" column.
# This column indicates if the home team won the game (1 for win, 0 for loss).

# (Right click source files to get the path and paste them within the quotes below)
data_2023_updated = pd.read_csv(r"C:UsersrichaPythonFootballMy_NFL_Forecaster2023.csv")
data_2024_updated = pd.read_csv(r"C:UsersrichaPythonFootballMy_NFL_Forecaster2024.csv")
#all_data = pd.read_csv(r"/Users/richardcartier/Documents/PythonProjects/My_NFL_Forecaster/MYSource.csv")

# Load the dataset containing the upcoming games schedule.
upcoming_games = pd.read_csv(r"C:UsersrichaPythonFootballMy_NFL_ForecasterThis_Weeks_Schedule.csv")

# Combine the data from the 2023 and 2024 seasons into a single DataFrame.
all_data = pd.concat([data_2023_updated, data_2024_updated])
#print(all_data)

# Now extract columns from the source csv file
raw_match_stats = all_data[[
'Date',
'Season',
'Week',
'Visitor',
'Home',
'Visitor_Score',
'Visitor_Pass_Att',
'Visitor_Pass_Comp', 
'Visitor_Pass_Yds',
'Visitor_Pass_TD',
'Visitor_Pass_Int',
'Visitor_Sacks',
'Visitor_Sack_Yds',
'Visitor_Rush_Att',
'Visitor_Rush_Yds',
'Visitor_Rush_TD',
'Visitor_Pen',
'Visitor_Pen_Yds',
'Visitor_Won',
'Visitor_Line',
'Visitor_Covered',
'Home_Score',
'Home_Pass_Att',
'Home_Pass_Comp', 
'Home_Pass_Yds',
'Home_Pass_TD',
'Home_Pass_Int',
'Home_Sacks',
'Home_Sack_Yds',
'Home_Rush_Att',
'Home_Rush_Yds',
'Home_Rush_TD',
'Home_Pen',
'Home_Pen_Yds',
'Home_Won',
'Home_Line',
'Home_Covered',
'OU_Line',
'OU_Result'
]]

# Determine number of Wins, Losses and Ties
 
raw_match_stats.loc[raw_match_stats['Home_Score'] == raw_match_stats['Visitor_Score'], 'home_team_result'] = 0
raw_match_stats.loc[raw_match_stats['Home_Score'] > raw_match_stats['Visitor_Score'], 'home_team_result'] = 1
raw_match_stats.loc[raw_match_stats['Home_Score'] < raw_match_stats['Visitor_Score'], 'home_team_result'] = -1

raw_match_stats.loc[raw_match_stats['Home_Score'] == raw_match_stats['Visitor_Score'], 'away_team_result'] = 0
raw_match_stats.loc[raw_match_stats['Home_Score'] > raw_match_stats['Visitor_Score'], 'away_team_result'] = 1
raw_match_stats.loc[raw_match_stats['Home_Score'] < raw_match_stats['Visitor_Score'], 'away_team_result'] = -1


# Split the raw_match_stats to two datasets (home_team_stats and away_team_stats)
home_team_stats = raw_match_stats[[
'Date',
'Home',
'Home_Score',
'Home_Pass_Att',
'Home_Pass_Comp', 
'Home_Pass_Yds',
'Home_Pass_TD',
'Home_Pass_Int',
'Home_Sacks',
'Home_Sack_Yds',
'Home_Rush_Att',
'Home_Rush_Yds',
'Home_Rush_TD',
'Home_Pen',
'Home_Pen_Yds',
'Home_Won',
'Visitor_Score',
'Visitor_Pass_Att',
'Visitor_Pass_Comp', 
'Visitor_Pass_Yds',
'Visitor_Pass_TD',
'Visitor_Pass_Int',
'Visitor_Sacks',
'Visitor_Sack_Yds',
'Visitor_Rush_Att',
'Visitor_Rush_Yds',
'Visitor_Rush_TD',
'Visitor_Pen',
'Visitor_Pen_Yds',
'Visitor_Won'
]]

home_team_stats = home_team_stats.rename(columns={'Home':'Name',
                                                'Home_Score':'Points_Scored',
                                                'Home_Pass_Att':'Pass_Attempts',
                                                'Home_Pass_Comp':'Passes_Comp',
                                                'Home_Pass_Yds':'Pass_Yards',
                                                'Home_Pass_TD':'Pass_TD',
                                                'Home_Pass_Int':'Pass_Int',
                                                'Home_Sacks':'Sacks',
                                                'Home_Sack_Yds':'Sack_Yards',
                                                'Home_Rush_Att':'Rush_Attempts',
                                                'Home_Rush_Yds':'Rush_Yards',
                                                'Home_Rush_TD':'Rush_TD',
                                                'Home_Pen':'Penalties',
                                                'Home_Pen_Yds':'Penalty_Yards',
                                                'Home_Won':'Result',
                                                'Visitor_Score':'Points_Scored',
                                                'Visitor_Pass_Att':'Pass_Attempts',
                                                'Visitor_Pass_Comp':'Passes_Comp',
                                                'Visitor_Pass_Yds':'Pass_Yards',
                                                'Visitor_Pass_TD':'Pass_TD',
                                                'Visitor_Pass_Int':'Pass_Int',
                                                'Visitor_Sacks':'Sacks',
                                                'Visitor_Sack_Yds':'Sack_Yards',
                                                'Visitor_Rush_Att':'Rush_Attempts',
                                                'Visitor_Rush_Yds':'Rush_Yards',
                                                'Visitor_Rush_TD':'Rush_TD',
                                                'Visitor_Pen':'Penalties',
                                                'Visitor_Pen_Yds':'Penalty_Yards',
                                                'Visitor_Won':'Result'
})


away_team_stats = raw_match_stats[[
'Date',
'Visitor',
'Visitor_Score',
'Visitor_Pass_Att',
'Visitor_Pass_Comp', 
'Visitor_Pass_Yds',
'Visitor_Pass_TD',
'Visitor_Pass_Int',
'Visitor_Sacks',
'Visitor_Sack_Yds',
'Visitor_Rush_Att',
'Visitor_Rush_Yds',
'Visitor_Rush_TD',
'Visitor_Pen',
'Visitor_Pen_Yds',
'Visitor_Won',
'Home_Score',
'Home_Pass_Att',
'Home_Pass_Comp', 
'Home_Pass_Yds',
'Home_Pass_TD',
'Home_Pass_Int',
'Home_Sacks',
'Home_Sack_Yds',
'Home_Rush_Att',
'Home_Rush_Yds',
'Home_Rush_TD',
'Home_Pen',
'Home_Pen_Yds',
'Home_Won'
]]

away_team_stats = away_team_stats.rename(columns={'Visitor':'Name',
                                                'Visitor_Score':'Points_Scored',
                                                'Visitor_Pass_Att':'Pass_Attempts',
                                                'Visitor_Pass_Comp':'Passes_Comp',
                                                'Visitor_Pass_Yds':'Pass_Yards',
                                                'Visitor_Pass_TD':'Pass_TD',
                                                'Visitor_Pass_Int':'Pass_Int',
                                                'Visitor_Sacks':'Sacks',
                                                'Visitor_Sack_Yds':'Sack_Yards',
                                                'Visitor_Rush_Att':'Rush_Attempts',
                                                'Visitor_Rush_Yds':'Rush_Yards',
                                                'Visitor_Rush_TD':'Rush_TD',
                                                'Visitor_Pen':'Penalties',
                                                'Visitor_Pen_Yds':'Penalty_Yards',
                                                'Visitor_Won':'Result',
                                                'Home_Score':'Points_Scored',
                                                'Home_Pass_Att':'Pass_Attempts',
                                                'Home_Pass_Comp':'Passes_Comp',
                                                'Home_Pass_Yds':'Pass_Yards',
                                                'Home_Pass_TD':'Pass_TD',
                                                'Home_Pass_Int':'Pass_Int',
                                                'Home_Sacks':'Sacks',
                                                'Home_Sack_Yds':'Sack_Yards',
                                                'Home_Rush_Att':'Rush_Attempts',
                                                'Home_Rush_Yds':'Rush_Yards',
                                                'Home_Rush_TD':'Rush_TD',
                                                'Home_Pen':'Penalties',
                                                'Home_Pen_Yds':'Penalty_Yards',
                                                'Home_Won':'Result'
})

# add an additional column to denote whether the team is playing at home or away - this will help us later
home_team_stats['home_or_away']= 1
away_team_stats['home_or_away']= 0

# stack these two datasets so that each row is the stats for a team for one match (team_stats_per_match)
team_stats_per_match = pd.concat([home_team_stats,away_team_stats])
print(team_stats_per_match)
print(team_stats_per_match.columns.tolist())

# Export the predictions to a CSV file
team_stats_per_match.to_csv('predictions.csv', index=False)

# At each row of this dataset, get the team name, find the stats for that team during the last 10 games, and average these stats (avg_stats_per_team). 
avg_stat_columns = ['points_per_game','pass_att_per_game','pass_comp_per_game','pass_yds_per_game','rush_att_per_game', 'rush_yds_per_game']
stats_list = []
for index, row in team_stats_per_match.iterrows():
    team_stats_last_five_matches = team_stats_per_match.loc[(team_stats_per_match['Name']==row['Name']) & (team_stats_per_match['Date']<row['Date'])].sort_values(by=['Date'], ascending=False)
    # A Pandas axis refers to the data in rows (axis = 1) or columns (axis = 0)
    stats_list.append(team_stats_last_five_matches.iloc[0:5,:].mean(axis=0).values[0:6])

2

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật