Two non-identical lists but can’t find where the difference is in R

I tried to replace some elements in list a with another elements B1 or B2 in R. That uses function f to generate a new list c. However, when I manually replace the elements by creating a list d, the new list c is different from d, even though both look the same.

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>a <- list(~X1, ~X2 + C1 + X1*C1)
b <- list(~X1, ~X2 + X3)
f <- (nms, replacement) {
replacement <- paste0(replacement, seq_along(nms))
Map((nms, replacement) {
vars <- all.vars(nms)
setNames(lapply(rep(replacement, length(vars)), as.name), vars)
}, nms, replacement) |>
unlist()
}
c <- lapply(a, (x) do.call(substitute, list(x, f(b, "B"))))
d <- list(~B1, ~B2 + C1 + B1*C1)
</code>
<code>a <- list(~X1, ~X2 + C1 + X1*C1) b <- list(~X1, ~X2 + X3) f <- (nms, replacement) { replacement <- paste0(replacement, seq_along(nms)) Map((nms, replacement) { vars <- all.vars(nms) setNames(lapply(rep(replacement, length(vars)), as.name), vars) }, nms, replacement) |> unlist() } c <- lapply(a, (x) do.call(substitute, list(x, f(b, "B")))) d <- list(~B1, ~B2 + C1 + B1*C1) </code>
a <- list(~X1, ~X2 + C1 + X1*C1)
b <- list(~X1, ~X2 + X3)

f <- (nms, replacement) {
 replacement <- paste0(replacement, seq_along(nms))
 Map((nms, replacement) {
   vars <- all.vars(nms)
   setNames(lapply(rep(replacement, length(vars)), as.name), vars)
 }, nms, replacement) |>
  unlist()
}

c <- lapply(a, (x) do.call(substitute, list(x, f(b, "B"))))
d <- list(~B1, ~B2 + C1 + B1*C1)

When I check if c and d are identical, it returns that they are not the same:

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>identical(c,d)
</code>
<code>identical(c,d) </code>
identical(c,d)

[1] FALSE

But I can’t find where the different elements lie in

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>c[!c %in% d]
</code>
<code>c[!c %in% d] </code>
c[!c %in% d]

list()

I am very confused about what the different elements are. By directly looking at c and d, they seem to be the same. I really need to keep function f to do the element replacement, but have to ensure c and d are essentially the same.

A follow-up question, the reason why the previous problem is concerning is because, if I use list c to draw a matrix, it will fail. But if I use d, manually created list, it works.

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>B1 <- rnorm(100)
B2 <- rnorm(100, mean = 2)
C1 <- rbinom(100, size = 1, prob = 0.5)
data <- data.frame(cbind(B1, B2, C1))
model.matrix(d[[2]], model.frame(d[[2]], data, na.action = 'na.pass'))
model.matrix(c[[2]], model.frame(c[[2]], data, na.action = 'na.pass'))
</code>
<code>B1 <- rnorm(100) B2 <- rnorm(100, mean = 2) C1 <- rbinom(100, size = 1, prob = 0.5) data <- data.frame(cbind(B1, B2, C1)) model.matrix(d[[2]], model.frame(d[[2]], data, na.action = 'na.pass')) model.matrix(c[[2]], model.frame(c[[2]], data, na.action = 'na.pass')) </code>
B1 <- rnorm(100)
B2 <- rnorm(100, mean = 2)
C1 <- rbinom(100, size = 1, prob = 0.5)
data <- data.frame(cbind(B1, B2, C1))

model.matrix(d[[2]], model.frame(d[[2]], data, na.action = 'na.pass'))
model.matrix(c[[2]], model.frame(c[[2]], data, na.action = 'na.pass'))

Error in x$terms %||% attr(x, “terms”) %||% stop(“no terms component nor attribute”) :
no terms component nor attribute

This error message was incurred from list c, but for list d, no error occurred.

1

They’re not identical but they are ‘equal’, so there’s no difference to find, e.g.

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>a <- list(~X1, ~X2 + C1 + X1*C1)
b <- list(~X1, ~X2 + X3)
f <- (nms, replacement) {
replacement <- paste0(replacement, seq_along(nms))
Map((nms, replacement) {
vars <- all.vars(nms)
setNames(lapply(rep(replacement, length(vars)), as.name), vars)
}, nms, replacement) |>
unlist()
}
c <- lapply(a, (x) do.call(substitute, list(x, f(b, "B"))))
d <- list(~B1, ~B2 + C1 + B1*C1)
identical(c,d)
#> [1] FALSE
str(c)
#> List of 2
#> $ : language ~B1
#> $ : language ~B2 + C1 + B1 * C1
str(d)
#> List of 2
#> $ :Class 'formula' language ~B1
#> .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
#> $ :Class 'formula' language ~B2 + C1 + B1 * C1
#> .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
all.equal(c,d)
#> [1] TRUE
</code>
<code>a <- list(~X1, ~X2 + C1 + X1*C1) b <- list(~X1, ~X2 + X3) f <- (nms, replacement) { replacement <- paste0(replacement, seq_along(nms)) Map((nms, replacement) { vars <- all.vars(nms) setNames(lapply(rep(replacement, length(vars)), as.name), vars) }, nms, replacement) |> unlist() } c <- lapply(a, (x) do.call(substitute, list(x, f(b, "B")))) d <- list(~B1, ~B2 + C1 + B1*C1) identical(c,d) #> [1] FALSE str(c) #> List of 2 #> $ : language ~B1 #> $ : language ~B2 + C1 + B1 * C1 str(d) #> List of 2 #> $ :Class 'formula' language ~B1 #> .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> #> $ :Class 'formula' language ~B2 + C1 + B1 * C1 #> .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> all.equal(c,d) #> [1] TRUE </code>
a <- list(~X1, ~X2 + C1 + X1*C1)
b <- list(~X1, ~X2 + X3)

f <- (nms, replacement) {
  replacement <- paste0(replacement, seq_along(nms))
  Map((nms, replacement) {
    vars <- all.vars(nms)
    setNames(lapply(rep(replacement, length(vars)), as.name), vars)
  }, nms, replacement) |>
    unlist()
}

c <- lapply(a, (x) do.call(substitute, list(x, f(b, "B"))))
d <- list(~B1, ~B2 + C1 + B1*C1)

identical(c,d)
#> [1] FALSE
str(c)
#> List of 2
#>  $ : language ~B1
#>  $ : language ~B2 + C1 + B1 * C1
str(d)
#> List of 2
#>  $ :Class 'formula'  language ~B1
#>   .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
#>  $ :Class 'formula'  language ~B2 + C1 + B1 * C1
#>   .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>

all.equal(c,d)
#> [1] TRUE

Created on 2024-09-09 with reprex v2.1.0

The difference highlighted by str() is causing your issue with model.matrix() (in the ‘follow up’ section). If you pass c[[2]] as a formula it works as expected, e.g.

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>a <- list(~X1, ~X2 + C1 + X1*C1)
b <- list(~X1, ~X2 + X3)
f <- (nms, replacement) {
replacement <- paste0(replacement, seq_along(nms))
Map((nms, replacement) {
vars <- all.vars(nms)
setNames(lapply(rep(replacement, length(vars)), as.name), vars)
}, nms, replacement) |>
unlist()
}
c <- lapply(a, (x) do.call(substitute, list(x, f(b, "B"))))
d <- list(~B1, ~B2 + C1 + B1*C1)
identical(c,d)
#> [1] FALSE
str(c)
#> List of 2
#> $ : language ~B1
#> $ : language ~B2 + C1 + B1 * C1
str(d)
#> List of 2
#> $ :Class 'formula' language ~B1
#> .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
#> $ :Class 'formula' language ~B2 + C1 + B1 * C1
#> .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
all.equal(c,d)
#> [1] TRUE
B1 <- rnorm(100)
B2 <- rnorm(100, mean = 2)
C1 <- rbinom(100, size = 1, prob = 0.5)
data <- data.frame(cbind(B1, B2, C1))
model.matrix(d[[2]], model.frame(d[[2]], data, na.action = 'na.pass'))
#> (Intercept) B2 C1 B1 C1:B1
#> 1 1 3.093556617 1 -0.78860541 -0.78860541
#> 2 1 1.886026799 0 0.56973224 0.00000000
#> 3 1 2.673870066 1 -0.60595212 -0.60595212
#> 4 1 1.871221289 0 -0.94427123 0.00000000
#> 5 1 0.921999097 0 -1.69236771 0.00000000
#> 6 1 2.075295923 1 0.10612483 0.10612483
#> 7 1 2.460368025 1 1.27639862 1.27639862
#> 8 1 4.009522227 0 0.39725422 0.00000000
#> 9 1 2.223665025 1 -0.67107557 -0.67107557
#> 10 1 3.618806953 1 0.21343146 0.21343146
#> 11 1 3.307040111 1 -1.25317583 -1.25317583
#> 12 1 3.941725053 0 -0.69040161 0.00000000
#> 13 1 3.111269308 1 0.55712532 0.55712532
#> 14 1 2.132800352 1 0.79852880 0.79852880
#> 15 1 1.454812161 1 0.18188305 0.18188305
#> 16 1 4.326464313 1 -0.11846250 -0.11846250
#> 17 1 1.302022850 0 -0.87418884 0.00000000
#> 18 1 0.583680486 1 -0.53905498 -0.53905498
#> 19 1 0.635689127 0 1.19463088 0.00000000
#> 20 1 3.054064555 0 0.54188247 0.00000000
#> 21 1 1.539410493 1 1.52761448 1.52761448
#> 22 1 3.674028603 0 0.37046407 0.00000000
#> 23 1 3.700911590 1 0.67188467 0.67188467
#> 24 1 2.634141310 0 0.57403657 0.00000000
#> 25 1 2.966272829 1 0.30644870 0.30644870
#> 26 1 2.332830222 1 0.32473422 0.32473422
#> 27 1 1.540861739 1 1.40447120 1.40447120
#> 28 1 -0.940790234 0 1.69992443 0.00000000
#> 29 1 3.290360051 1 0.09498966 0.09498966
#> 30 1 2.650609034 0 0.77487189 0.00000000
#> 31 1 2.303463420 0 1.53959759 0.00000000
#> 32 1 1.053506147 0 0.73908997 0.00000000
#> 33 1 1.426712923 0 -0.16465926 0.00000000
#> 34 1 -0.201379101 0 -0.38726197 0.00000000
#> 35 1 0.001141829 0 -0.58938402 0.00000000
#> 36 1 0.375382810 1 1.26362046 1.26362046
#> 37 1 1.206842118 0 -0.61859053 0.00000000
#> 38 1 1.834290474 1 -0.42452583 -0.42452583
#> 39 1 0.846476578 1 -1.81057200 -1.81057200
#> 40 1 1.330010557 1 0.34031947 0.34031947
#> 41 1 2.124938389 1 -1.12457154 -1.12457154
#> 42 1 2.023037941 1 1.32196017 1.32196017
#> 43 1 2.129205146 0 -0.95367504 0.00000000
#> 44 1 4.724999255 0 -0.36177523 0.00000000
#> 45 1 3.487162408 1 1.11070383 1.11070383
#> 46 1 2.553726607 0 0.69837652 0.00000000
#> 47 1 3.050741904 0 -0.67757336 0.00000000
#> 48 1 3.554602933 0 0.36333151 0.00000000
#> 49 1 2.748949526 0 0.87355033 0.00000000
#> 50 1 1.026679772 1 1.14239462 1.14239462
#> 51 1 1.345758771 1 -1.32579950 -1.32579950
#> 52 1 3.360090558 1 -0.99770094 -0.99770094
#> 53 1 3.150835981 0 -0.91257389 0.00000000
#> 54 1 3.217728895 1 -0.77698461 -0.77698461
#> 55 1 2.312442115 0 0.27581649 0.00000000
#> 56 1 0.699403756 1 1.94805079 1.94805079
#> 57 1 0.770966838 1 1.47982081 1.47982081
#> 58 1 1.211283624 1 0.40359669 0.40359669
#> 59 1 3.251803657 1 0.40494923 0.40494923
#> 60 1 0.558543700 0 -0.33612244 0.00000000
#> 61 1 2.339337168 1 0.78301829 0.78301829
#> 62 1 1.558130647 0 -1.15495472 0.00000000
#> 63 1 2.790130444 1 -1.35876495 -1.35876495
#> 64 1 1.337390342 0 0.17752648 0.00000000
#> 65 1 1.033420092 0 -2.29789756 0.00000000
#> 66 1 -0.321807848 1 -1.93711695 -1.93711695
#> 67 1 1.958510332 1 -0.63353430 -0.63353430
#> 68 1 2.281820149 0 -1.08199237 0.00000000
#> 69 1 3.035093868 1 0.26209777 0.26209777
#> 70 1 2.851736534 1 -0.56065301 -0.56065301
#> 71 1 2.007729850 0 0.23194564 0.00000000
#> 72 1 2.155800998 0 0.62628023 0.00000000
#> 73 1 1.162590867 0 0.81750230 0.00000000
#> 74 1 1.721310695 0 -1.28561868 0.00000000
#> 75 1 2.839788378 0 -0.86662818 0.00000000
#> 76 1 2.059912681 0 -1.89798538 0.00000000
#> 77 1 2.282398919 1 1.73596974 1.73596974
#> 78 1 2.565795767 1 -0.12856807 -0.12856807
#> 79 1 2.572737178 0 -0.51742529 0.00000000
#> 80 1 0.533060826 0 1.01470751 0.00000000
#> 81 1 2.303617594 0 0.08326794 0.00000000
#> 82 1 2.710917777 0 -2.59741216 0.00000000
#> 83 1 1.397209217 1 -2.37363088 -2.37363088
#> 84 1 2.140376061 1 -0.90394275 -0.90394275
#> 85 1 1.391443923 0 -0.99545878 0.00000000
#> 86 1 2.697787502 1 1.31235291 1.31235291
#> 87 1 1.070710761 1 -0.32742765 -0.32742765
#> 88 1 1.725460871 0 -0.20906359 0.00000000
#> 89 1 2.245153738 1 -0.48761022 -0.48761022
#> 90 1 0.987976417 0 1.04495976 0.00000000
#> 91 1 0.230881185 1 -0.26202523 -0.26202523
#> 92 1 2.751294035 0 0.42203115 0.00000000
#> 93 1 2.023670252 1 0.21725446 0.21725446
#> 94 1 2.508597779 0 -0.34738879 0.00000000
#> 95 1 1.682285681 0 -0.44146421 0.00000000
#> 96 1 1.584391454 1 1.93577488 1.93577488
#> 97 1 1.831828815 0 -1.09342683 0.00000000
#> 98 1 1.657436050 0 0.44482820 0.00000000
#> 99 1 2.378333477 0 -0.44507681 0.00000000
#> 100 1 2.959965426 1 0.03676946 0.03676946
#> attr(,"assign")
#> [1] 0 1 2 3 4
str(d[[2]])
#> Class 'formula' language ~B2 + C1 + B1 * C1
#> ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
model.matrix(c[[2]], model.frame(c[[2]], data, na.action = 'na.pass'))
#> Error in x$terms %||% attr(x, "terms") %||% stop("no terms component nor attribute"): no terms component nor attribute
str(c[[2]])
#> language ~B2 + C1 + B1 * C1
model.matrix(as.formula(c[[2]]), model.frame(c[[2]], data, na.action = 'na.pass'))
#> (Intercept) B2 C1 B1 C1:B1
#> 1 1 3.093556617 1 -0.78860541 -0.78860541
#> 2 1 1.886026799 0 0.56973224 0.00000000
#> 3 1 2.673870066 1 -0.60595212 -0.60595212
#> 4 1 1.871221289 0 -0.94427123 0.00000000
#> 5 1 0.921999097 0 -1.69236771 0.00000000
#> 6 1 2.075295923 1 0.10612483 0.10612483
#> 7 1 2.460368025 1 1.27639862 1.27639862
#> 8 1 4.009522227 0 0.39725422 0.00000000
#> 9 1 2.223665025 1 -0.67107557 -0.67107557
#> 10 1 3.618806953 1 0.21343146 0.21343146
#> 11 1 3.307040111 1 -1.25317583 -1.25317583
#> 12 1 3.941725053 0 -0.69040161 0.00000000
#> 13 1 3.111269308 1 0.55712532 0.55712532
#> 14 1 2.132800352 1 0.79852880 0.79852880
#> 15 1 1.454812161 1 0.18188305 0.18188305
#> 16 1 4.326464313 1 -0.11846250 -0.11846250
#> 17 1 1.302022850 0 -0.87418884 0.00000000
#> 18 1 0.583680486 1 -0.53905498 -0.53905498
#> 19 1 0.635689127 0 1.19463088 0.00000000
#> 20 1 3.054064555 0 0.54188247 0.00000000
#> 21 1 1.539410493 1 1.52761448 1.52761448
#> 22 1 3.674028603 0 0.37046407 0.00000000
#> 23 1 3.700911590 1 0.67188467 0.67188467
#> 24 1 2.634141310 0 0.57403657 0.00000000
#> 25 1 2.966272829 1 0.30644870 0.30644870
#> 26 1 2.332830222 1 0.32473422 0.32473422
#> 27 1 1.540861739 1 1.40447120 1.40447120
#> 28 1 -0.940790234 0 1.69992443 0.00000000
#> 29 1 3.290360051 1 0.09498966 0.09498966
#> 30 1 2.650609034 0 0.77487189 0.00000000
#> 31 1 2.303463420 0 1.53959759 0.00000000
#> 32 1 1.053506147 0 0.73908997 0.00000000
#> 33 1 1.426712923 0 -0.16465926 0.00000000
#> 34 1 -0.201379101 0 -0.38726197 0.00000000
#> 35 1 0.001141829 0 -0.58938402 0.00000000
#> 36 1 0.375382810 1 1.26362046 1.26362046
#> 37 1 1.206842118 0 -0.61859053 0.00000000
#> 38 1 1.834290474 1 -0.42452583 -0.42452583
#> 39 1 0.846476578 1 -1.81057200 -1.81057200
#> 40 1 1.330010557 1 0.34031947 0.34031947
#> 41 1 2.124938389 1 -1.12457154 -1.12457154
#> 42 1 2.023037941 1 1.32196017 1.32196017
#> 43 1 2.129205146 0 -0.95367504 0.00000000
#> 44 1 4.724999255 0 -0.36177523 0.00000000
#> 45 1 3.487162408 1 1.11070383 1.11070383
#> 46 1 2.553726607 0 0.69837652 0.00000000
#> 47 1 3.050741904 0 -0.67757336 0.00000000
#> 48 1 3.554602933 0 0.36333151 0.00000000
#> 49 1 2.748949526 0 0.87355033 0.00000000
#> 50 1 1.026679772 1 1.14239462 1.14239462
#> 51 1 1.345758771 1 -1.32579950 -1.32579950
#> 52 1 3.360090558 1 -0.99770094 -0.99770094
#> 53 1 3.150835981 0 -0.91257389 0.00000000
#> 54 1 3.217728895 1 -0.77698461 -0.77698461
#> 55 1 2.312442115 0 0.27581649 0.00000000
#> 56 1 0.699403756 1 1.94805079 1.94805079
#> 57 1 0.770966838 1 1.47982081 1.47982081
#> 58 1 1.211283624 1 0.40359669 0.40359669
#> 59 1 3.251803657 1 0.40494923 0.40494923
#> 60 1 0.558543700 0 -0.33612244 0.00000000
#> 61 1 2.339337168 1 0.78301829 0.78301829
#> 62 1 1.558130647 0 -1.15495472 0.00000000
#> 63 1 2.790130444 1 -1.35876495 -1.35876495
#> 64 1 1.337390342 0 0.17752648 0.00000000
#> 65 1 1.033420092 0 -2.29789756 0.00000000
#> 66 1 -0.321807848 1 -1.93711695 -1.93711695
#> 67 1 1.958510332 1 -0.63353430 -0.63353430
#> 68 1 2.281820149 0 -1.08199237 0.00000000
#> 69 1 3.035093868 1 0.26209777 0.26209777
#> 70 1 2.851736534 1 -0.56065301 -0.56065301
#> 71 1 2.007729850 0 0.23194564 0.00000000
#> 72 1 2.155800998 0 0.62628023 0.00000000
#> 73 1 1.162590867 0 0.81750230 0.00000000
#> 74 1 1.721310695 0 -1.28561868 0.00000000
#> 75 1 2.839788378 0 -0.86662818 0.00000000
#> 76 1 2.059912681 0 -1.89798538 0.00000000
#> 77 1 2.282398919 1 1.73596974 1.73596974
#> 78 1 2.565795767 1 -0.12856807 -0.12856807
#> 79 1 2.572737178 0 -0.51742529 0.00000000
#> 80 1 0.533060826 0 1.01470751 0.00000000
#> 81 1 2.303617594 0 0.08326794 0.00000000
#> 82 1 2.710917777 0 -2.59741216 0.00000000
#> 83 1 1.397209217 1 -2.37363088 -2.37363088
#> 84 1 2.140376061 1 -0.90394275 -0.90394275
#> 85 1 1.391443923 0 -0.99545878 0.00000000
#> 86 1 2.697787502 1 1.31235291 1.31235291
#> 87 1 1.070710761 1 -0.32742765 -0.32742765
#> 88 1 1.725460871 0 -0.20906359 0.00000000
#> 89 1 2.245153738 1 -0.48761022 -0.48761022
#> 90 1 0.987976417 0 1.04495976 0.00000000
#> 91 1 0.230881185 1 -0.26202523 -0.26202523
#> 92 1 2.751294035 0 0.42203115 0.00000000
#> 93 1 2.023670252 1 0.21725446 0.21725446
#> 94 1 2.508597779 0 -0.34738879 0.00000000
#> 95 1 1.682285681 0 -0.44146421 0.00000000
#> 96 1 1.584391454 1 1.93577488 1.93577488
#> 97 1 1.831828815 0 -1.09342683 0.00000000
#> 98 1 1.657436050 0 0.44482820 0.00000000
#> 99 1 2.378333477 0 -0.44507681 0.00000000
#> 100 1 2.959965426 1 0.03676946 0.03676946
#> attr(,"assign")
#> [1] 0 1 2 3 4
</code>
<code>a <- list(~X1, ~X2 + C1 + X1*C1) b <- list(~X1, ~X2 + X3) f <- (nms, replacement) { replacement <- paste0(replacement, seq_along(nms)) Map((nms, replacement) { vars <- all.vars(nms) setNames(lapply(rep(replacement, length(vars)), as.name), vars) }, nms, replacement) |> unlist() } c <- lapply(a, (x) do.call(substitute, list(x, f(b, "B")))) d <- list(~B1, ~B2 + C1 + B1*C1) identical(c,d) #> [1] FALSE str(c) #> List of 2 #> $ : language ~B1 #> $ : language ~B2 + C1 + B1 * C1 str(d) #> List of 2 #> $ :Class 'formula' language ~B1 #> .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> #> $ :Class 'formula' language ~B2 + C1 + B1 * C1 #> .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> all.equal(c,d) #> [1] TRUE B1 <- rnorm(100) B2 <- rnorm(100, mean = 2) C1 <- rbinom(100, size = 1, prob = 0.5) data <- data.frame(cbind(B1, B2, C1)) model.matrix(d[[2]], model.frame(d[[2]], data, na.action = 'na.pass')) #> (Intercept) B2 C1 B1 C1:B1 #> 1 1 3.093556617 1 -0.78860541 -0.78860541 #> 2 1 1.886026799 0 0.56973224 0.00000000 #> 3 1 2.673870066 1 -0.60595212 -0.60595212 #> 4 1 1.871221289 0 -0.94427123 0.00000000 #> 5 1 0.921999097 0 -1.69236771 0.00000000 #> 6 1 2.075295923 1 0.10612483 0.10612483 #> 7 1 2.460368025 1 1.27639862 1.27639862 #> 8 1 4.009522227 0 0.39725422 0.00000000 #> 9 1 2.223665025 1 -0.67107557 -0.67107557 #> 10 1 3.618806953 1 0.21343146 0.21343146 #> 11 1 3.307040111 1 -1.25317583 -1.25317583 #> 12 1 3.941725053 0 -0.69040161 0.00000000 #> 13 1 3.111269308 1 0.55712532 0.55712532 #> 14 1 2.132800352 1 0.79852880 0.79852880 #> 15 1 1.454812161 1 0.18188305 0.18188305 #> 16 1 4.326464313 1 -0.11846250 -0.11846250 #> 17 1 1.302022850 0 -0.87418884 0.00000000 #> 18 1 0.583680486 1 -0.53905498 -0.53905498 #> 19 1 0.635689127 0 1.19463088 0.00000000 #> 20 1 3.054064555 0 0.54188247 0.00000000 #> 21 1 1.539410493 1 1.52761448 1.52761448 #> 22 1 3.674028603 0 0.37046407 0.00000000 #> 23 1 3.700911590 1 0.67188467 0.67188467 #> 24 1 2.634141310 0 0.57403657 0.00000000 #> 25 1 2.966272829 1 0.30644870 0.30644870 #> 26 1 2.332830222 1 0.32473422 0.32473422 #> 27 1 1.540861739 1 1.40447120 1.40447120 #> 28 1 -0.940790234 0 1.69992443 0.00000000 #> 29 1 3.290360051 1 0.09498966 0.09498966 #> 30 1 2.650609034 0 0.77487189 0.00000000 #> 31 1 2.303463420 0 1.53959759 0.00000000 #> 32 1 1.053506147 0 0.73908997 0.00000000 #> 33 1 1.426712923 0 -0.16465926 0.00000000 #> 34 1 -0.201379101 0 -0.38726197 0.00000000 #> 35 1 0.001141829 0 -0.58938402 0.00000000 #> 36 1 0.375382810 1 1.26362046 1.26362046 #> 37 1 1.206842118 0 -0.61859053 0.00000000 #> 38 1 1.834290474 1 -0.42452583 -0.42452583 #> 39 1 0.846476578 1 -1.81057200 -1.81057200 #> 40 1 1.330010557 1 0.34031947 0.34031947 #> 41 1 2.124938389 1 -1.12457154 -1.12457154 #> 42 1 2.023037941 1 1.32196017 1.32196017 #> 43 1 2.129205146 0 -0.95367504 0.00000000 #> 44 1 4.724999255 0 -0.36177523 0.00000000 #> 45 1 3.487162408 1 1.11070383 1.11070383 #> 46 1 2.553726607 0 0.69837652 0.00000000 #> 47 1 3.050741904 0 -0.67757336 0.00000000 #> 48 1 3.554602933 0 0.36333151 0.00000000 #> 49 1 2.748949526 0 0.87355033 0.00000000 #> 50 1 1.026679772 1 1.14239462 1.14239462 #> 51 1 1.345758771 1 -1.32579950 -1.32579950 #> 52 1 3.360090558 1 -0.99770094 -0.99770094 #> 53 1 3.150835981 0 -0.91257389 0.00000000 #> 54 1 3.217728895 1 -0.77698461 -0.77698461 #> 55 1 2.312442115 0 0.27581649 0.00000000 #> 56 1 0.699403756 1 1.94805079 1.94805079 #> 57 1 0.770966838 1 1.47982081 1.47982081 #> 58 1 1.211283624 1 0.40359669 0.40359669 #> 59 1 3.251803657 1 0.40494923 0.40494923 #> 60 1 0.558543700 0 -0.33612244 0.00000000 #> 61 1 2.339337168 1 0.78301829 0.78301829 #> 62 1 1.558130647 0 -1.15495472 0.00000000 #> 63 1 2.790130444 1 -1.35876495 -1.35876495 #> 64 1 1.337390342 0 0.17752648 0.00000000 #> 65 1 1.033420092 0 -2.29789756 0.00000000 #> 66 1 -0.321807848 1 -1.93711695 -1.93711695 #> 67 1 1.958510332 1 -0.63353430 -0.63353430 #> 68 1 2.281820149 0 -1.08199237 0.00000000 #> 69 1 3.035093868 1 0.26209777 0.26209777 #> 70 1 2.851736534 1 -0.56065301 -0.56065301 #> 71 1 2.007729850 0 0.23194564 0.00000000 #> 72 1 2.155800998 0 0.62628023 0.00000000 #> 73 1 1.162590867 0 0.81750230 0.00000000 #> 74 1 1.721310695 0 -1.28561868 0.00000000 #> 75 1 2.839788378 0 -0.86662818 0.00000000 #> 76 1 2.059912681 0 -1.89798538 0.00000000 #> 77 1 2.282398919 1 1.73596974 1.73596974 #> 78 1 2.565795767 1 -0.12856807 -0.12856807 #> 79 1 2.572737178 0 -0.51742529 0.00000000 #> 80 1 0.533060826 0 1.01470751 0.00000000 #> 81 1 2.303617594 0 0.08326794 0.00000000 #> 82 1 2.710917777 0 -2.59741216 0.00000000 #> 83 1 1.397209217 1 -2.37363088 -2.37363088 #> 84 1 2.140376061 1 -0.90394275 -0.90394275 #> 85 1 1.391443923 0 -0.99545878 0.00000000 #> 86 1 2.697787502 1 1.31235291 1.31235291 #> 87 1 1.070710761 1 -0.32742765 -0.32742765 #> 88 1 1.725460871 0 -0.20906359 0.00000000 #> 89 1 2.245153738 1 -0.48761022 -0.48761022 #> 90 1 0.987976417 0 1.04495976 0.00000000 #> 91 1 0.230881185 1 -0.26202523 -0.26202523 #> 92 1 2.751294035 0 0.42203115 0.00000000 #> 93 1 2.023670252 1 0.21725446 0.21725446 #> 94 1 2.508597779 0 -0.34738879 0.00000000 #> 95 1 1.682285681 0 -0.44146421 0.00000000 #> 96 1 1.584391454 1 1.93577488 1.93577488 #> 97 1 1.831828815 0 -1.09342683 0.00000000 #> 98 1 1.657436050 0 0.44482820 0.00000000 #> 99 1 2.378333477 0 -0.44507681 0.00000000 #> 100 1 2.959965426 1 0.03676946 0.03676946 #> attr(,"assign") #> [1] 0 1 2 3 4 str(d[[2]]) #> Class 'formula' language ~B2 + C1 + B1 * C1 #> ..- attr(*, ".Environment")=<environment: R_GlobalEnv> model.matrix(c[[2]], model.frame(c[[2]], data, na.action = 'na.pass')) #> Error in x$terms %||% attr(x, "terms") %||% stop("no terms component nor attribute"): no terms component nor attribute str(c[[2]]) #> language ~B2 + C1 + B1 * C1 model.matrix(as.formula(c[[2]]), model.frame(c[[2]], data, na.action = 'na.pass')) #> (Intercept) B2 C1 B1 C1:B1 #> 1 1 3.093556617 1 -0.78860541 -0.78860541 #> 2 1 1.886026799 0 0.56973224 0.00000000 #> 3 1 2.673870066 1 -0.60595212 -0.60595212 #> 4 1 1.871221289 0 -0.94427123 0.00000000 #> 5 1 0.921999097 0 -1.69236771 0.00000000 #> 6 1 2.075295923 1 0.10612483 0.10612483 #> 7 1 2.460368025 1 1.27639862 1.27639862 #> 8 1 4.009522227 0 0.39725422 0.00000000 #> 9 1 2.223665025 1 -0.67107557 -0.67107557 #> 10 1 3.618806953 1 0.21343146 0.21343146 #> 11 1 3.307040111 1 -1.25317583 -1.25317583 #> 12 1 3.941725053 0 -0.69040161 0.00000000 #> 13 1 3.111269308 1 0.55712532 0.55712532 #> 14 1 2.132800352 1 0.79852880 0.79852880 #> 15 1 1.454812161 1 0.18188305 0.18188305 #> 16 1 4.326464313 1 -0.11846250 -0.11846250 #> 17 1 1.302022850 0 -0.87418884 0.00000000 #> 18 1 0.583680486 1 -0.53905498 -0.53905498 #> 19 1 0.635689127 0 1.19463088 0.00000000 #> 20 1 3.054064555 0 0.54188247 0.00000000 #> 21 1 1.539410493 1 1.52761448 1.52761448 #> 22 1 3.674028603 0 0.37046407 0.00000000 #> 23 1 3.700911590 1 0.67188467 0.67188467 #> 24 1 2.634141310 0 0.57403657 0.00000000 #> 25 1 2.966272829 1 0.30644870 0.30644870 #> 26 1 2.332830222 1 0.32473422 0.32473422 #> 27 1 1.540861739 1 1.40447120 1.40447120 #> 28 1 -0.940790234 0 1.69992443 0.00000000 #> 29 1 3.290360051 1 0.09498966 0.09498966 #> 30 1 2.650609034 0 0.77487189 0.00000000 #> 31 1 2.303463420 0 1.53959759 0.00000000 #> 32 1 1.053506147 0 0.73908997 0.00000000 #> 33 1 1.426712923 0 -0.16465926 0.00000000 #> 34 1 -0.201379101 0 -0.38726197 0.00000000 #> 35 1 0.001141829 0 -0.58938402 0.00000000 #> 36 1 0.375382810 1 1.26362046 1.26362046 #> 37 1 1.206842118 0 -0.61859053 0.00000000 #> 38 1 1.834290474 1 -0.42452583 -0.42452583 #> 39 1 0.846476578 1 -1.81057200 -1.81057200 #> 40 1 1.330010557 1 0.34031947 0.34031947 #> 41 1 2.124938389 1 -1.12457154 -1.12457154 #> 42 1 2.023037941 1 1.32196017 1.32196017 #> 43 1 2.129205146 0 -0.95367504 0.00000000 #> 44 1 4.724999255 0 -0.36177523 0.00000000 #> 45 1 3.487162408 1 1.11070383 1.11070383 #> 46 1 2.553726607 0 0.69837652 0.00000000 #> 47 1 3.050741904 0 -0.67757336 0.00000000 #> 48 1 3.554602933 0 0.36333151 0.00000000 #> 49 1 2.748949526 0 0.87355033 0.00000000 #> 50 1 1.026679772 1 1.14239462 1.14239462 #> 51 1 1.345758771 1 -1.32579950 -1.32579950 #> 52 1 3.360090558 1 -0.99770094 -0.99770094 #> 53 1 3.150835981 0 -0.91257389 0.00000000 #> 54 1 3.217728895 1 -0.77698461 -0.77698461 #> 55 1 2.312442115 0 0.27581649 0.00000000 #> 56 1 0.699403756 1 1.94805079 1.94805079 #> 57 1 0.770966838 1 1.47982081 1.47982081 #> 58 1 1.211283624 1 0.40359669 0.40359669 #> 59 1 3.251803657 1 0.40494923 0.40494923 #> 60 1 0.558543700 0 -0.33612244 0.00000000 #> 61 1 2.339337168 1 0.78301829 0.78301829 #> 62 1 1.558130647 0 -1.15495472 0.00000000 #> 63 1 2.790130444 1 -1.35876495 -1.35876495 #> 64 1 1.337390342 0 0.17752648 0.00000000 #> 65 1 1.033420092 0 -2.29789756 0.00000000 #> 66 1 -0.321807848 1 -1.93711695 -1.93711695 #> 67 1 1.958510332 1 -0.63353430 -0.63353430 #> 68 1 2.281820149 0 -1.08199237 0.00000000 #> 69 1 3.035093868 1 0.26209777 0.26209777 #> 70 1 2.851736534 1 -0.56065301 -0.56065301 #> 71 1 2.007729850 0 0.23194564 0.00000000 #> 72 1 2.155800998 0 0.62628023 0.00000000 #> 73 1 1.162590867 0 0.81750230 0.00000000 #> 74 1 1.721310695 0 -1.28561868 0.00000000 #> 75 1 2.839788378 0 -0.86662818 0.00000000 #> 76 1 2.059912681 0 -1.89798538 0.00000000 #> 77 1 2.282398919 1 1.73596974 1.73596974 #> 78 1 2.565795767 1 -0.12856807 -0.12856807 #> 79 1 2.572737178 0 -0.51742529 0.00000000 #> 80 1 0.533060826 0 1.01470751 0.00000000 #> 81 1 2.303617594 0 0.08326794 0.00000000 #> 82 1 2.710917777 0 -2.59741216 0.00000000 #> 83 1 1.397209217 1 -2.37363088 -2.37363088 #> 84 1 2.140376061 1 -0.90394275 -0.90394275 #> 85 1 1.391443923 0 -0.99545878 0.00000000 #> 86 1 2.697787502 1 1.31235291 1.31235291 #> 87 1 1.070710761 1 -0.32742765 -0.32742765 #> 88 1 1.725460871 0 -0.20906359 0.00000000 #> 89 1 2.245153738 1 -0.48761022 -0.48761022 #> 90 1 0.987976417 0 1.04495976 0.00000000 #> 91 1 0.230881185 1 -0.26202523 -0.26202523 #> 92 1 2.751294035 0 0.42203115 0.00000000 #> 93 1 2.023670252 1 0.21725446 0.21725446 #> 94 1 2.508597779 0 -0.34738879 0.00000000 #> 95 1 1.682285681 0 -0.44146421 0.00000000 #> 96 1 1.584391454 1 1.93577488 1.93577488 #> 97 1 1.831828815 0 -1.09342683 0.00000000 #> 98 1 1.657436050 0 0.44482820 0.00000000 #> 99 1 2.378333477 0 -0.44507681 0.00000000 #> 100 1 2.959965426 1 0.03676946 0.03676946 #> attr(,"assign") #> [1] 0 1 2 3 4 </code>
a <- list(~X1, ~X2 + C1 + X1*C1)
b <- list(~X1, ~X2 + X3)

f <- (nms, replacement) {
  replacement <- paste0(replacement, seq_along(nms))
  Map((nms, replacement) {
    vars <- all.vars(nms)
    setNames(lapply(rep(replacement, length(vars)), as.name), vars)
  }, nms, replacement) |>
    unlist()
}

c <- lapply(a, (x) do.call(substitute, list(x, f(b, "B"))))
d <- list(~B1, ~B2 + C1 + B1*C1)

identical(c,d)
#> [1] FALSE
str(c)
#> List of 2
#>  $ : language ~B1
#>  $ : language ~B2 + C1 + B1 * C1
str(d)
#> List of 2
#>  $ :Class 'formula'  language ~B1
#>   .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
#>  $ :Class 'formula'  language ~B2 + C1 + B1 * C1
#>   .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>

all.equal(c,d)
#> [1] TRUE

B1 <- rnorm(100)
B2 <- rnorm(100, mean = 2)
C1 <- rbinom(100, size = 1, prob = 0.5)
data <- data.frame(cbind(B1, B2, C1))

model.matrix(d[[2]], model.frame(d[[2]], data, na.action = 'na.pass'))
#>     (Intercept)           B2 C1          B1       C1:B1
#> 1             1  3.093556617  1 -0.78860541 -0.78860541
#> 2             1  1.886026799  0  0.56973224  0.00000000
#> 3             1  2.673870066  1 -0.60595212 -0.60595212
#> 4             1  1.871221289  0 -0.94427123  0.00000000
#> 5             1  0.921999097  0 -1.69236771  0.00000000
#> 6             1  2.075295923  1  0.10612483  0.10612483
#> 7             1  2.460368025  1  1.27639862  1.27639862
#> 8             1  4.009522227  0  0.39725422  0.00000000
#> 9             1  2.223665025  1 -0.67107557 -0.67107557
#> 10            1  3.618806953  1  0.21343146  0.21343146
#> 11            1  3.307040111  1 -1.25317583 -1.25317583
#> 12            1  3.941725053  0 -0.69040161  0.00000000
#> 13            1  3.111269308  1  0.55712532  0.55712532
#> 14            1  2.132800352  1  0.79852880  0.79852880
#> 15            1  1.454812161  1  0.18188305  0.18188305
#> 16            1  4.326464313  1 -0.11846250 -0.11846250
#> 17            1  1.302022850  0 -0.87418884  0.00000000
#> 18            1  0.583680486  1 -0.53905498 -0.53905498
#> 19            1  0.635689127  0  1.19463088  0.00000000
#> 20            1  3.054064555  0  0.54188247  0.00000000
#> 21            1  1.539410493  1  1.52761448  1.52761448
#> 22            1  3.674028603  0  0.37046407  0.00000000
#> 23            1  3.700911590  1  0.67188467  0.67188467
#> 24            1  2.634141310  0  0.57403657  0.00000000
#> 25            1  2.966272829  1  0.30644870  0.30644870
#> 26            1  2.332830222  1  0.32473422  0.32473422
#> 27            1  1.540861739  1  1.40447120  1.40447120
#> 28            1 -0.940790234  0  1.69992443  0.00000000
#> 29            1  3.290360051  1  0.09498966  0.09498966
#> 30            1  2.650609034  0  0.77487189  0.00000000
#> 31            1  2.303463420  0  1.53959759  0.00000000
#> 32            1  1.053506147  0  0.73908997  0.00000000
#> 33            1  1.426712923  0 -0.16465926  0.00000000
#> 34            1 -0.201379101  0 -0.38726197  0.00000000
#> 35            1  0.001141829  0 -0.58938402  0.00000000
#> 36            1  0.375382810  1  1.26362046  1.26362046
#> 37            1  1.206842118  0 -0.61859053  0.00000000
#> 38            1  1.834290474  1 -0.42452583 -0.42452583
#> 39            1  0.846476578  1 -1.81057200 -1.81057200
#> 40            1  1.330010557  1  0.34031947  0.34031947
#> 41            1  2.124938389  1 -1.12457154 -1.12457154
#> 42            1  2.023037941  1  1.32196017  1.32196017
#> 43            1  2.129205146  0 -0.95367504  0.00000000
#> 44            1  4.724999255  0 -0.36177523  0.00000000
#> 45            1  3.487162408  1  1.11070383  1.11070383
#> 46            1  2.553726607  0  0.69837652  0.00000000
#> 47            1  3.050741904  0 -0.67757336  0.00000000
#> 48            1  3.554602933  0  0.36333151  0.00000000
#> 49            1  2.748949526  0  0.87355033  0.00000000
#> 50            1  1.026679772  1  1.14239462  1.14239462
#> 51            1  1.345758771  1 -1.32579950 -1.32579950
#> 52            1  3.360090558  1 -0.99770094 -0.99770094
#> 53            1  3.150835981  0 -0.91257389  0.00000000
#> 54            1  3.217728895  1 -0.77698461 -0.77698461
#> 55            1  2.312442115  0  0.27581649  0.00000000
#> 56            1  0.699403756  1  1.94805079  1.94805079
#> 57            1  0.770966838  1  1.47982081  1.47982081
#> 58            1  1.211283624  1  0.40359669  0.40359669
#> 59            1  3.251803657  1  0.40494923  0.40494923
#> 60            1  0.558543700  0 -0.33612244  0.00000000
#> 61            1  2.339337168  1  0.78301829  0.78301829
#> 62            1  1.558130647  0 -1.15495472  0.00000000
#> 63            1  2.790130444  1 -1.35876495 -1.35876495
#> 64            1  1.337390342  0  0.17752648  0.00000000
#> 65            1  1.033420092  0 -2.29789756  0.00000000
#> 66            1 -0.321807848  1 -1.93711695 -1.93711695
#> 67            1  1.958510332  1 -0.63353430 -0.63353430
#> 68            1  2.281820149  0 -1.08199237  0.00000000
#> 69            1  3.035093868  1  0.26209777  0.26209777
#> 70            1  2.851736534  1 -0.56065301 -0.56065301
#> 71            1  2.007729850  0  0.23194564  0.00000000
#> 72            1  2.155800998  0  0.62628023  0.00000000
#> 73            1  1.162590867  0  0.81750230  0.00000000
#> 74            1  1.721310695  0 -1.28561868  0.00000000
#> 75            1  2.839788378  0 -0.86662818  0.00000000
#> 76            1  2.059912681  0 -1.89798538  0.00000000
#> 77            1  2.282398919  1  1.73596974  1.73596974
#> 78            1  2.565795767  1 -0.12856807 -0.12856807
#> 79            1  2.572737178  0 -0.51742529  0.00000000
#> 80            1  0.533060826  0  1.01470751  0.00000000
#> 81            1  2.303617594  0  0.08326794  0.00000000
#> 82            1  2.710917777  0 -2.59741216  0.00000000
#> 83            1  1.397209217  1 -2.37363088 -2.37363088
#> 84            1  2.140376061  1 -0.90394275 -0.90394275
#> 85            1  1.391443923  0 -0.99545878  0.00000000
#> 86            1  2.697787502  1  1.31235291  1.31235291
#> 87            1  1.070710761  1 -0.32742765 -0.32742765
#> 88            1  1.725460871  0 -0.20906359  0.00000000
#> 89            1  2.245153738  1 -0.48761022 -0.48761022
#> 90            1  0.987976417  0  1.04495976  0.00000000
#> 91            1  0.230881185  1 -0.26202523 -0.26202523
#> 92            1  2.751294035  0  0.42203115  0.00000000
#> 93            1  2.023670252  1  0.21725446  0.21725446
#> 94            1  2.508597779  0 -0.34738879  0.00000000
#> 95            1  1.682285681  0 -0.44146421  0.00000000
#> 96            1  1.584391454  1  1.93577488  1.93577488
#> 97            1  1.831828815  0 -1.09342683  0.00000000
#> 98            1  1.657436050  0  0.44482820  0.00000000
#> 99            1  2.378333477  0 -0.44507681  0.00000000
#> 100           1  2.959965426  1  0.03676946  0.03676946
#> attr(,"assign")
#> [1] 0 1 2 3 4
str(d[[2]])
#> Class 'formula'  language ~B2 + C1 + B1 * C1
#>   ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
model.matrix(c[[2]], model.frame(c[[2]], data, na.action = 'na.pass'))
#> Error in x$terms %||% attr(x, "terms") %||% stop("no terms component nor attribute"): no terms component nor attribute
str(c[[2]])
#>  language ~B2 + C1 + B1 * C1

model.matrix(as.formula(c[[2]]), model.frame(c[[2]], data, na.action = 'na.pass'))
#>     (Intercept)           B2 C1          B1       C1:B1
#> 1             1  3.093556617  1 -0.78860541 -0.78860541
#> 2             1  1.886026799  0  0.56973224  0.00000000
#> 3             1  2.673870066  1 -0.60595212 -0.60595212
#> 4             1  1.871221289  0 -0.94427123  0.00000000
#> 5             1  0.921999097  0 -1.69236771  0.00000000
#> 6             1  2.075295923  1  0.10612483  0.10612483
#> 7             1  2.460368025  1  1.27639862  1.27639862
#> 8             1  4.009522227  0  0.39725422  0.00000000
#> 9             1  2.223665025  1 -0.67107557 -0.67107557
#> 10            1  3.618806953  1  0.21343146  0.21343146
#> 11            1  3.307040111  1 -1.25317583 -1.25317583
#> 12            1  3.941725053  0 -0.69040161  0.00000000
#> 13            1  3.111269308  1  0.55712532  0.55712532
#> 14            1  2.132800352  1  0.79852880  0.79852880
#> 15            1  1.454812161  1  0.18188305  0.18188305
#> 16            1  4.326464313  1 -0.11846250 -0.11846250
#> 17            1  1.302022850  0 -0.87418884  0.00000000
#> 18            1  0.583680486  1 -0.53905498 -0.53905498
#> 19            1  0.635689127  0  1.19463088  0.00000000
#> 20            1  3.054064555  0  0.54188247  0.00000000
#> 21            1  1.539410493  1  1.52761448  1.52761448
#> 22            1  3.674028603  0  0.37046407  0.00000000
#> 23            1  3.700911590  1  0.67188467  0.67188467
#> 24            1  2.634141310  0  0.57403657  0.00000000
#> 25            1  2.966272829  1  0.30644870  0.30644870
#> 26            1  2.332830222  1  0.32473422  0.32473422
#> 27            1  1.540861739  1  1.40447120  1.40447120
#> 28            1 -0.940790234  0  1.69992443  0.00000000
#> 29            1  3.290360051  1  0.09498966  0.09498966
#> 30            1  2.650609034  0  0.77487189  0.00000000
#> 31            1  2.303463420  0  1.53959759  0.00000000
#> 32            1  1.053506147  0  0.73908997  0.00000000
#> 33            1  1.426712923  0 -0.16465926  0.00000000
#> 34            1 -0.201379101  0 -0.38726197  0.00000000
#> 35            1  0.001141829  0 -0.58938402  0.00000000
#> 36            1  0.375382810  1  1.26362046  1.26362046
#> 37            1  1.206842118  0 -0.61859053  0.00000000
#> 38            1  1.834290474  1 -0.42452583 -0.42452583
#> 39            1  0.846476578  1 -1.81057200 -1.81057200
#> 40            1  1.330010557  1  0.34031947  0.34031947
#> 41            1  2.124938389  1 -1.12457154 -1.12457154
#> 42            1  2.023037941  1  1.32196017  1.32196017
#> 43            1  2.129205146  0 -0.95367504  0.00000000
#> 44            1  4.724999255  0 -0.36177523  0.00000000
#> 45            1  3.487162408  1  1.11070383  1.11070383
#> 46            1  2.553726607  0  0.69837652  0.00000000
#> 47            1  3.050741904  0 -0.67757336  0.00000000
#> 48            1  3.554602933  0  0.36333151  0.00000000
#> 49            1  2.748949526  0  0.87355033  0.00000000
#> 50            1  1.026679772  1  1.14239462  1.14239462
#> 51            1  1.345758771  1 -1.32579950 -1.32579950
#> 52            1  3.360090558  1 -0.99770094 -0.99770094
#> 53            1  3.150835981  0 -0.91257389  0.00000000
#> 54            1  3.217728895  1 -0.77698461 -0.77698461
#> 55            1  2.312442115  0  0.27581649  0.00000000
#> 56            1  0.699403756  1  1.94805079  1.94805079
#> 57            1  0.770966838  1  1.47982081  1.47982081
#> 58            1  1.211283624  1  0.40359669  0.40359669
#> 59            1  3.251803657  1  0.40494923  0.40494923
#> 60            1  0.558543700  0 -0.33612244  0.00000000
#> 61            1  2.339337168  1  0.78301829  0.78301829
#> 62            1  1.558130647  0 -1.15495472  0.00000000
#> 63            1  2.790130444  1 -1.35876495 -1.35876495
#> 64            1  1.337390342  0  0.17752648  0.00000000
#> 65            1  1.033420092  0 -2.29789756  0.00000000
#> 66            1 -0.321807848  1 -1.93711695 -1.93711695
#> 67            1  1.958510332  1 -0.63353430 -0.63353430
#> 68            1  2.281820149  0 -1.08199237  0.00000000
#> 69            1  3.035093868  1  0.26209777  0.26209777
#> 70            1  2.851736534  1 -0.56065301 -0.56065301
#> 71            1  2.007729850  0  0.23194564  0.00000000
#> 72            1  2.155800998  0  0.62628023  0.00000000
#> 73            1  1.162590867  0  0.81750230  0.00000000
#> 74            1  1.721310695  0 -1.28561868  0.00000000
#> 75            1  2.839788378  0 -0.86662818  0.00000000
#> 76            1  2.059912681  0 -1.89798538  0.00000000
#> 77            1  2.282398919  1  1.73596974  1.73596974
#> 78            1  2.565795767  1 -0.12856807 -0.12856807
#> 79            1  2.572737178  0 -0.51742529  0.00000000
#> 80            1  0.533060826  0  1.01470751  0.00000000
#> 81            1  2.303617594  0  0.08326794  0.00000000
#> 82            1  2.710917777  0 -2.59741216  0.00000000
#> 83            1  1.397209217  1 -2.37363088 -2.37363088
#> 84            1  2.140376061  1 -0.90394275 -0.90394275
#> 85            1  1.391443923  0 -0.99545878  0.00000000
#> 86            1  2.697787502  1  1.31235291  1.31235291
#> 87            1  1.070710761  1 -0.32742765 -0.32742765
#> 88            1  1.725460871  0 -0.20906359  0.00000000
#> 89            1  2.245153738  1 -0.48761022 -0.48761022
#> 90            1  0.987976417  0  1.04495976  0.00000000
#> 91            1  0.230881185  1 -0.26202523 -0.26202523
#> 92            1  2.751294035  0  0.42203115  0.00000000
#> 93            1  2.023670252  1  0.21725446  0.21725446
#> 94            1  2.508597779  0 -0.34738879  0.00000000
#> 95            1  1.682285681  0 -0.44146421  0.00000000
#> 96            1  1.584391454  1  1.93577488  1.93577488
#> 97            1  1.831828815  0 -1.09342683  0.00000000
#> 98            1  1.657436050  0  0.44482820  0.00000000
#> 99            1  2.378333477  0 -0.44507681  0.00000000
#> 100           1  2.959965426  1  0.03676946  0.03676946
#> attr(,"assign")
#> [1] 0 1 2 3 4

Created on 2024-09-09 with reprex v2.1.0

You could also evaluate the call, e.g. eval(c[[2]]) will give you the same output as as.formula(c[[2]]). Does that help with your use-case?

0

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật