Turn over cards in minimum number of steps

Imagine you’re given an array of cards. Some of them are facing down (0), while some of them are facing up (1). Is it possible for given fixed K to turn all the cards face-up by turning over any K consecutive cards? If it’s possible what’s the minimum number of steps?

For example:

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>N=6; K=3;
1 0 0 1 0 0
</code>
<code>N=6; K=3; 1 0 0 1 0 0 </code>
N=6; K=3;
1 0 0 1 0 0

It is possible to make all the cards facing up, by first turning over cards 2-3-4 and then turning over cards 4-5-6. And the minimum number of steps is 2.

My idea was to iterate through the sequence and when I’ll find a 0 then I flip the next K cards (if it’s possible), including the 0. But it seems that this idea doesn’t work always. For example:

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>N=56; K=5
0 0 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0
</code>
<code>N=56; K=5 0 0 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0 </code>
N=56; K=5
0 0 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0

is one counter-example. Since after I perform the above-mentioned algorithm I end up with all the cards faced up, except for the last one.


This is a contest problem, so one of the test cases is:

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>1000 25
0 0 1 0 0 1 0 0 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0
</code>
<code>1000 25 0 0 1 0 0 1 0 0 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 </code>
1000 25
0 0 1 0 0 1 0 0 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0

The supposed right answer is 441, while my algorithm says is 443.

3

First, there is high possibility that combination of parameters and starting cards might be unsolvable. For example

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>N=3; K=2
1 0 1
</code>
<code>N=3; K=2 1 0 1 </code>
N=3; K=2
1 0 1

Is unsolvable.

Your algorithm doesn’t find minimum number of steps, because your example configuration cannot be solved at all.

Now the question is whenever given algorithm does indeed guarantee that it can always find solution if it exists. I don’t have rigid proof, but I do believe yes.

The reason for my belief are the edge cards. The moment the edge cards become 1, you cannot apply “flip” function on them and K-1 area next to them. If you did, you would have to apply it again, completely reverting previous flip. They are invariant to flip function. So if you manage to flip an edge card to be 1, you can ignore it, remove it from the list of cards and continue with reduced list. If there is 0 on the edge, you flip it along with K-1 other cards, which gives you 1 which you can then ignore. You are doing exactly that with your algorithm. At end of this algorithm, you end up with list of cards whose length is EndN <= K.

Given that, figuring out whenever the configuration is solvable is easy. The configuration is only solvable if EndN = K and if remaining cards are either up or down.

4

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật