I am working with a pandas DataFrame that contains data structured in a certain way. I need to transform it to a new structure with the following columns:
my desired output
indicator name | dimension type | dimension | date | value | company |
---|---|---|---|---|---|
Number of Vehicles | all policies | all | 1 | Nrta | |
Number of Vehicles | by channel | Aggregators | 1 | Nrta | |
Number of Vehicles | by channel | Non-Aggregators | 0 | Nrta | |
Number of Vehicles | by gender | Male | 0 | Nrta | |
Number of Vehicles | by gender | Female | 0 | Nrta |
my_current_file
I have started to write a function to transform the DataFrame, but I need help to adjust it so that it matches the desired output format.
<code>def transform_table(df):
# Check if the DataFrame is valid or has the expected structure
if df.empty or df.shape[1] < 10:
print("DataFrame is empty or does not have enough columns.")
return pd.DataFrame() # Return an empty DataFrame if input is invalid
# Extract the company name and other data
company_name = df.iloc[0, 2] # Get the company name from the first row, third column
# Create a list to store the output data
out_data = []
out_data.append(['indicator name', 'channels', 'gender', 'region', 'age', 'date', 'value', 'company'])
# Loop through the rows (starting from row 6 in the original array, which is index 5 in 0-based indexing)
for idx, row in df.iloc[5:0].iterrows():
for v in range(0, 3): # Loop through the 3 quarters
out_data.append([
"Number of Vehicles", row[5], row[4], row[2], row[1], df.iloc[3, 6 + v * 4], df.iloc[idx, 6 + v * 4], company_name
])
out_data.append([
"Total Premium excluding commission", row[5], row[4], row[2], row[1],df.iloc[3, 6 + v * 4], df.iloc[idx, 7 + v * 4], company_name
])
out_data.append([
"Commission amount", row[5], row[4], row[2], row[1], df.iloc[3, 6 + v * 4], df.iloc[idx, 8 + v * 4], company_name
])
out_data.append([
"Total Premium including commission", row[5], row[4], row[2], row[1], df.iloc[3, 6 + v * 4], df.iloc[idx, 9 + v * 4], company_name
])
return pd.DataFrame(out_data)
</code>
<code>def transform_table(df):
# Check if the DataFrame is valid or has the expected structure
if df.empty or df.shape[1] < 10:
print("DataFrame is empty or does not have enough columns.")
return pd.DataFrame() # Return an empty DataFrame if input is invalid
# Extract the company name and other data
company_name = df.iloc[0, 2] # Get the company name from the first row, third column
# Create a list to store the output data
out_data = []
out_data.append(['indicator name', 'channels', 'gender', 'region', 'age', 'date', 'value', 'company'])
# Loop through the rows (starting from row 6 in the original array, which is index 5 in 0-based indexing)
for idx, row in df.iloc[5:0].iterrows():
for v in range(0, 3): # Loop through the 3 quarters
out_data.append([
"Number of Vehicles", row[5], row[4], row[2], row[1], df.iloc[3, 6 + v * 4], df.iloc[idx, 6 + v * 4], company_name
])
out_data.append([
"Total Premium excluding commission", row[5], row[4], row[2], row[1],df.iloc[3, 6 + v * 4], df.iloc[idx, 7 + v * 4], company_name
])
out_data.append([
"Commission amount", row[5], row[4], row[2], row[1], df.iloc[3, 6 + v * 4], df.iloc[idx, 8 + v * 4], company_name
])
out_data.append([
"Total Premium including commission", row[5], row[4], row[2], row[1], df.iloc[3, 6 + v * 4], df.iloc[idx, 9 + v * 4], company_name
])
return pd.DataFrame(out_data)
</code>
def transform_table(df):
# Check if the DataFrame is valid or has the expected structure
if df.empty or df.shape[1] < 10:
print("DataFrame is empty or does not have enough columns.")
return pd.DataFrame() # Return an empty DataFrame if input is invalid
# Extract the company name and other data
company_name = df.iloc[0, 2] # Get the company name from the first row, third column
# Create a list to store the output data
out_data = []
out_data.append(['indicator name', 'channels', 'gender', 'region', 'age', 'date', 'value', 'company'])
# Loop through the rows (starting from row 6 in the original array, which is index 5 in 0-based indexing)
for idx, row in df.iloc[5:0].iterrows():
for v in range(0, 3): # Loop through the 3 quarters
out_data.append([
"Number of Vehicles", row[5], row[4], row[2], row[1], df.iloc[3, 6 + v * 4], df.iloc[idx, 6 + v * 4], company_name
])
out_data.append([
"Total Premium excluding commission", row[5], row[4], row[2], row[1],df.iloc[3, 6 + v * 4], df.iloc[idx, 7 + v * 4], company_name
])
out_data.append([
"Commission amount", row[5], row[4], row[2], row[1], df.iloc[3, 6 + v * 4], df.iloc[idx, 8 + v * 4], company_name
])
out_data.append([
"Total Premium including commission", row[5], row[4], row[2], row[1], df.iloc[3, 6 + v * 4], df.iloc[idx, 9 + v * 4], company_name
])
return pd.DataFrame(out_data)
the ouput from the code above
indicator name | channels | gender | region | age | date | value | company |
---|---|---|---|---|---|---|---|
Number of Vehicles | Aggregators | 6/30/2024 | 1 | Nrta | |||
Number of Vehicles | Non-Aggregators | 6/30/2024 | 0 | Nrta |
Question:
How can I adjust my existing code to produce the desired output format? Any suggestions to help achieve this transformation effectively would be greatly appreciated!