Content:
I’m having trouble getting PyTorch to recognize CUDA on my system. Here are the details:
System Information:
- OS: Ubuntu 22.04.4 LTS (x86_64) running on WSL2
- Python version: 3.7.16
- PyTorch version: 1.12.0+cu113
- GPU: NVIDIA GeForce GTX 1650 with Max-Q Design
- Nvidia driver version: 537.13
Environment Information:
python -m torch.utils.collect_env
Collecting environment information...
PyTorch version: 1.12.0+cu113
Is debug build: False
CUDA used to build PyTorch: 11.3
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 9.5.0-1ubuntu1~22.04) 9.5.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.17
Python version: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-debian-bookworm-sid
Is CUDA available: False
CUDA runtime version: Could not collect
GPU models and configuration: GPU 0: NVIDIA GeForce GTX 1650 with Max-Q Design
Nvidia driver version: 537.13
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
Versions of relevant libraries:
[pip3] numpy==1.21.6
[pip3] torch==1.12.0+cu113
[pip3] torchaudio==0.12.0+cu113
[pip3] torchvision==0.13.0+cu113
[conda] numpy 1.21.6 pypi_0 pypi
[conda] torch 1.12.0+cu113 pypi_0 pypi
[conda] torchaudio 0.12.0+cu113 pypi_0 pypi
[conda] torchvision 0.13.0+cu113 pypi_0 pypi
Steps I’ve Taken:
-
Verified that CUDA is installed correctly:
nvcc --version
Output:
nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2021 NVIDIA Corporation Built on Mon_May__3_19:15:13_PDT_2021 Cuda compilation tools, release 11.3, V11.3.109 Build cuda_11.3.r11.3/compiler.29920130_0
-
Set environment variables:
export PATH=/usr/local/cuda-11.3/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-11.3/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
OR
echo 'export PATH=/usr/local/cuda-11.3/bin${PATH:+:${PATH}}' >> ~/.bashrc echo 'export LD_LIBRARY_PATH=/usr/local/cuda-11.3/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}' >> ~/.bashrc
-
Verified NVIDIA driver status:
nvidia-smi
Output:
Sun May 19 03:03:53 2024 +---------------------------------------------------------------------------------------+ | NVIDIA-SMI 535.103 Driver Version: 537.13 CUDA Version: 12.2 | |-----------------------------------------+----------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+======================+======================| | 0 NVIDIA GeForce GTX 1650 ... On | 00000000:02:00.0 Off | N/A | | N/A 50C P0 13W / 35W | 0MiB / 4096MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ +---------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=======================================================================================| | No running processes found | +---------------------------------------------------------------------------------------+
-
Checked if CUDA is available in PyTorch:
import torch print(torch.cuda.is_available())
Output:
False
Questions:
- Why is
torch.cuda.is_available()
returningFalse
? - What additional checks or steps should I perform to resolve this issue?
Thank you in advance for your help!