I am trying to use tianshou to integrate my env, but I am facing action_scaling can only be True when action_space is Box but got: Box(-1.0, 1.0, (2,), float32)
ENV
import sys
import os
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from market import GBMPriceSimulator
from amm.amm import AMM, SimpleFeeAMM
from amm.fee import PercentFee
from typing import Tuple
import numpy as np
from gym import spaces
EPSILON = 1e-5
class ArbitrageEnv:
def __init__(self,
market: GBMPriceSimulator,
amm: AMM
) -> None:
self.amm = amm
self.market = market
self.cum_pnl = 0.
self.observation_space = spaces.Box(low=np.array([0., 0., 0., 0.], dtype=np.float32),
high=np.array([np.inf, np.inf, np.inf, np.inf], dtype=np.float32))
self.action_space = spaces.Box(low=np.array([-1 + EPSILON, 0], dtype=np.float32),
high=np.array([1 - EPSILON, 1]), dtype=np.float32)
# action: [trade_size_fraction, trade_decision (take opportunity when >0.5)]
def step(self, action: np.array) -> Tuple[
np.array, float, bool, bool, dict]: # next_obs, rew, done, truncated, info
trade_size_fraction = action[0]
# Transform the second action component to the range [0, 1]
trade_prob = (action[1] + 1) / 2 # Mapping from [-1, 1] to [0, 1]
if trade_prob > 0.5:
if trade_size_fraction > 0:
asset_in, asset_out = 'B', 'A'
else:
asset_in, asset_out = 'A', 'B'
size = abs(trade_size_fraction) * self.amm.portfolio[asset_out]
print(f"asset_in: {asset_in}, asset_out: {asset_out}, size: {size}")
success, info = self.amm.trade_swap(asset_in, asset_out, -size) # take out -size shares of outing asset
# calculate the reward
asset_delta = info['asset_delta']
fee = info['fee']
print(f"asset_delta: {asset_delta}, fee: {fee}")
print(self.amm)
amm_order_cost = asset_delta[asset_in] + fee[asset_in] # unit is always in B
if asset_out == 'B':
market_order_gain = abs(asset_delta[asset_out]) * self.market.current_price
else:
market_order_gain = abs(asset_delta[asset_out]) / self.market.current_price
rew = market_order_gain - amm_order_cost
print(f"market_order_gain: {market_order_gain} | "
f"amm_order_cost: {amm_order_cost} | "
f"reward: {rew}")
else:
success, info = True, {}
rew = 0.
self.cum_pnl += rew
self.market.next()
next_obs = self.get_obs()
return next_obs, rew, False, not success, {'amm_trade_info': info}
def reset(self):
self.cum_pnl = 0
self.amm.reset()
self.market.reset()
return self.get_obs()
def get_obs(self) -> np.array:
cur_market_price = self.market.current_price
tmp = self.amm.portfolio
cur_amm_price = tmp['A'] / tmp['B']
return np.array([cur_market_price, cur_amm_price, tmp['A'], tmp['B']])
def render(self, mode='human'):
pass
if __name__ == '__main__':
market = GBMPriceSimulator()
amm_no_fee = SimpleFeeAMM(
utility_func="constant_product",
init_portfolio={'A': 1000, 'B': 1000, 'L': 1000},
fee_structure=PercentFee(0.0)
)
env = ArbitrageEnv(market, amm_no_fee)
# Reset the environment
obs = env.reset()
print(f"Initial observation: {obs}")
# Perform a few steps with sample actions
for step in range(5):
# Generate a random action
trade_size_fraction = np.random.uniform(-0.1, 0.1) # Random number between -1 and 1
trade_decision = np.random.uniform(0, 1) # Random number between 0 and 1
action = np.array([trade_size_fraction, trade_decision], dtype=np.float32)
print(f"n--------------------"
f"nStep {step + 1}:")
print(f"action: {action}")
next_obs, reward, done, truncated, info = env.step(action)
print(f"Next observation: {next_obs}")
print(f"Reward: {reward}")
print(f"Done: {done}")
print(f"Truncated: {truncated}")
print(f"Info: {info}")
main.py
#!/usr/bin/env python3
import argparse
import datetime
import os
import sys
import pprint
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
import numpy as np
import torch
from torch import nn
from torch.distributions import Distribution, Independent, Normal
from torch.optim.lr_scheduler import LambdaLR
from tianshou.data import Collector, ReplayBuffer, VectorReplayBuffer
from tianshou.highlevel.logger import LoggerFactoryDefault
from tianshou.policy import PPOPolicy
from tianshou.policy.base import BasePolicy
from tianshou.trainer import OnpolicyTrainer
from tianshou.utils.net.common import ActorCritic, Net
from tianshou.utils.net.continuous import ActorProb, Critic
from tianshou.env import DummyVectorEnv
from market import GBMPriceSimulator
from amm.amm import SimpleFeeAMM
from amm.fee import PercentFee
from AmmEnv import ArbitrageEnv
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="ArbitrageEnv")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--buffer-size", type=int, default=4096)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
parser.add_argument("--lr", type=float, default=3e-4)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--epoch", type=int, default=100)
parser.add_argument("--step-per-epoch", type=int, default=30000)
parser.add_argument("--step-per-collect", type=int, default=2048)
parser.add_argument("--repeat-per-collect", type=int, default=10)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument("--training-num", type=int, default=8)
parser.add_argument("--test-num", type=int, default=10)
parser.add_argument("--rew-norm", type=int, default=True)
parser.add_argument("--vf-coef", type=float, default=0.25)
parser.add_argument("--ent-coef", type=float, default=0.0)
parser.add_argument("--gae-lambda", type=float, default=0.95)
parser.add_argument("--bound-action-method", type=str, default="clip")
parser.add_argument("--lr-decay", type=int, default=True)
parser.add_argument("--max-grad-norm", type=float, default=0.5)
parser.add_argument("--eps-clip", type=float, default=0.2)
parser.add_argument("--dual-clip", type=float, default=None)
parser.add_argument("--value-clip", type=int, default=0)
parser.add_argument("--norm-adv", type=int, default=0)
parser.add_argument("--recompute-adv", type=int, default=1)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
parser.add_argument("--resume-path", type=str, default=None)
parser.add_argument("--resume-id", type=str, default=None)
parser.add_argument(
"--logger",
type=str,
default="tensorboard",
choices=["tensorboard", "wandb"],
)
parser.add_argument("--wandb-project", type=str, default="arbitrage.benchmark")
parser.add_argument(
"--watch",
default=False,
action="store_true",
help="watch the play of pre-trained policy only",
)
return parser.parse_args()
def test_ppo(args: argparse.Namespace = get_args()) -> None:
# Initialize the environment
env = ArbitrageEnv(GBMPriceSimulator(), SimpleFeeAMM(
utility_func="constant_product",
init_portfolio={'A': 1000, 'B': 1000, 'L': 1000},
fee_structure=PercentFee(0.0)
))
# Create parallel environments
train_envs = DummyVectorEnv([lambda: env for _ in range(args.training_num)])
test_envs = DummyVectorEnv([lambda: env for _ in range(args.test_num)])
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = 1.0 # Since action is in [-1, 1] and [0, 1]
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high))
# Seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# Model
net_a = Net(
args.state_shape,
hidden_sizes=args.hidden_sizes,
activation=nn.Tanh,
device=args.device,
)
actor = ActorProb(
net_a,
args.action_shape,
unbounded=True,
device=args.device,
).to(args.device)
net_c = Net(
args.state_shape,
hidden_sizes=args.hidden_sizes,
activation=nn.Tanh,
device=args.device,
)
critic = Critic(net_c, device=args.device).to(args.device)
actor_critic = ActorCritic(actor, critic)
torch.nn.init.constant_(actor.sigma_param, -0.5)
for m in actor_critic.modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
torch.nn.init.zeros_(m.bias)
for m in actor.mu.modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.zeros_(m.bias)
m.weight.data.copy_(0.01 * m.weight.data)
optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
lr_scheduler = None
if args.lr_decay:
max_update_num = np.ceil(args.step_per_epoch / args.step_per_collect) * args.epoch
lr_scheduler = LambdaLR(optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num)
def dist(loc_scale: tuple[torch.Tensor, torch.Tensor]) -> Distribution:
loc, scale = loc_scale
return Independent(Normal(loc, scale), 1)
policy: PPOPolicy = PPOPolicy(
actor=actor,
critic=critic,
optim=optim,
dist_fn=dist,
discount_factor=args.gamma,
gae_lambda=args.gae_lambda,
max_grad_norm=args.max_grad_norm,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
reward_normalization=args.rew_norm,
action_scaling=False,
action_bound_method=args.bound_action_method,
lr_scheduler=lr_scheduler,
action_space=env.action_space,
eps_clip=args.eps_clip,
value_clip=args.value_clip,
dual_clip=args.dual_clip,
advantage_normalization=args.norm_adv,
recompute_advantage=args.recompute_adv,
)
# Load a previous policy if specified
if args.resume_path:
ckpt = torch.load(args.resume_path, map_location=args.device)
policy.load_state_dict(ckpt["model"])
train_envs.set_obs_rms(ckpt["obs_rms"])
test_envs.set_obs_rms(ckpt["obs_rms"])
print("Loaded agent from: ", args.resume_path)
# Create collectors
buffer: VectorReplayBuffer | ReplayBuffer
if args.training_num > 1:
buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
else:
buffer = ReplayBuffer(args.buffer_size)
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs)
# Logging setup
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
args.algo_name = "ppo"
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
log_path = os.path.join(args.logdir, log_name)
# Logger
logger_factory = LoggerFactoryDefault()
if args.logger == "wandb":
logger_factory.logger_type = "wandb"
logger_factory.wandb_project = args.wandb_project
else:
logger_factory.logger_type = "tensorboard"
logger = logger_factory.create_logger(
log_dir=log_path,
experiment_name=log_name,
run_id=args.resume_id,
config_dict=vars(args),
)
def save_best_fn(policy: BasePolicy) -> None:
state = {"model": policy.state_dict(), "obs_rms": train_envs.get_obs_rms()}
torch.save(state, os.path.join(log_path, "policy.pth"))
if not args.watch:
# Trainer
result = OnpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
repeat_per_collect=args.repeat_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
step_per_collect=args.step_per_collect,
save_best_fn=save_best_fn,
logger=logger,
test_in_train=False,
).run()
pprint.pprint(result)
# Watch performance
test_envs.seed(args.seed)
test_collector.reset()
collector_stats = test_collector.collect(n_episode=args.test_num, render=args.render)
print(collector_stats)
if __name__ == "__main__":
test_ppo()
First, I got error “ValueError: action_scaling can only be True when action_space is Box but got: Box([-0.99999 0. ], [0.99999 1. ], (2,), float32)”, then I turn the action_scaling to false, and I got ” Unsupported action space: Box([-0.99999 0. ], [0.99999 1. ], (2,), float32).”
Hao Fu is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.