Relative Content

Tag Archive for implementations

Anti-pattern? Double header and exposed implementation detail

Consider that I’ve implemented SHA-256 hashing in C as incrementally updated IUF (init-update-finalize) working context and 3 subroutines. To efficiently use it in multi-threaded applications, users may want to avoid heap allocation using malloc or calloc, etc. and declare the working context on the stack using a structure type I’ve provided in the header.

Which is the most practical way to add functionality to this piece of code?

I’m writing an open source library which handles hexagonal grids. It mainly revolves around the HexagonalGrid and the Hexagon class. There is a HexagonalGridBuilder class which builds the grid which contains Hexagon objects. What I’m trying to achieve is to enable the user to add arbitrary data to each Hexagon. The interface looks like this:

Which is the most practical way to add functionality to this piece of code?

I’m writing an open source library which handles hexagonal grids. It mainly revolves around the HexagonalGrid and the Hexagon class. There is a HexagonalGridBuilder class which builds the grid which contains Hexagon objects. What I’m trying to achieve is to enable the user to add arbitrary data to each Hexagon. The interface looks like this:

Which is the most practical way to add functionality to this piece of code?

I’m writing an open source library which handles hexagonal grids. It mainly revolves around the HexagonalGrid and the Hexagon class. There is a HexagonalGridBuilder class which builds the grid which contains Hexagon objects. What I’m trying to achieve is to enable the user to add arbitrary data to each Hexagon. The interface looks like this:

Which is the most practical way to add functionality to this piece of code?

I’m writing an open source library which handles hexagonal grids. It mainly revolves around the HexagonalGrid and the Hexagon class. There is a HexagonalGridBuilder class which builds the grid which contains Hexagon objects. What I’m trying to achieve is to enable the user to add arbitrary data to each Hexagon. The interface looks like this:

How to represent a geometric line programmatically?

I have been trying to design a library to do some simple geometric computations in an Euclidean space regardless of its dimension. While it is easy to represent points, vectors, hyperspheres and hyperplanes in a generic fashion, I am still unable to find a generic way to represent a (infinite) line, even though lines share properties across dimensions.

How to represent a geometric line programmatically?

I have been trying to design a library to do some simple geometric computations in an Euclidean space regardless of its dimension. While it is easy to represent points, vectors, hyperspheres and hyperplanes in a generic fashion, I am still unable to find a generic way to represent a (infinite) line, even though lines share properties across dimensions.

How to represent a geometric line programmatically?

I have been trying to design a library to do some simple geometric computations in an Euclidean space regardless of its dimension. While it is easy to represent points, vectors, hyperspheres and hyperplanes in a generic fashion, I am still unable to find a generic way to represent a (infinite) line, even though lines share properties across dimensions.