I have been building a RAG chat application using Azure Open AI model (gpt-35-turbo) and azure embeddings (ada-embedding-002). Here I am providing the prompt templates and the RAG chain.
from langchain.chains import create_history_aware_retriever
from langchain_core.prompts import MessagesPlaceholder
contextualize_q_system_prompt = (
"Given a chat history and the latest user question "
"which might reference context in the chat history, "
"formulate a standalone question which can be understood "
"without the chat history. Do NOT answer the question, "
"just reformulate it if needed and otherwise return it as is."
)
contextualize_q_prompt = ChatPromptTemplate.from_messages(
[
("system", contextualize_q_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
history_aware_retriever = create_history_aware_retriever(
llm, retriever, contextualize_q_prompt
)
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
system_prompt = (
"You are an assistant for question-answering tasks. "
"Use the following pieces of retrieved context to answer "
"the question. If you don't know the answer, say that you "
"don't know. Don't use any other data sources except the provided pdf."
"Use six sentences maximum and keep the "
"answer concise."
"nn"
"{context}"
)
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory
store = {}
def get_session_history(session_id: str) -> BaseChatMessageHistory:
if session_id not in store:
store[session_id] = ChatMessageHistory()
return store[session_id]
conversational_rag_chain = RunnableWithMessageHistory(
rag_chain,
get_session_history,
input_messages_key="input",
history_messages_key="chat_history",
output_messages_key="answer",
)
conversational_rag_chain.invoke(
{"input": "Hi, can you tell me about apple ?"},
config={
"configurable": {"session_id": "abc123"}
}, # constructs a key "abc123" in `store`.
)["answer"]
When I use openai models and embeddings it’s working perfectly and doesn’t provide information outside the pdf, but when I use azure open ai model and azure embeddings, it’s providing answers from it’s knowledge base also. What is the reason ?