tempCodeRunnerFile.cpp:85:42: error: expected expression sort(indices.begin(), indices.end(), [&](int a, int b) {

I tried running my code but I got an error.

the error said:

tempCodeRunnerFile.cpp:85:42: error: expected expression
sort(indices.begin(), indices.end(), [&](int a, int b) {

im running this code on vscode (MacOS) . I have set up my vscode, but im not sure if there’s anything that I missed.

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>the code im trying to run:
#include <iostream>
#include <vector>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <algorithm>
#include <numeric> // For std::iota
using namespace std;
const int populationSize = 100; // Size of the population
const int chromosomeLength = 10; // Length of each chromosome
const double crossoverProbability = 0.8; // Probability of crossover
const int numberOfOffspring = 10; // Number of offspring to produce
vector<vector<double> > chromosomes; // Population of chromosomes
// Function to calculate fitness based on Schwefel function
double calculateFitness(const vector<double>& chromosome) {
double sum = 0.0;
int d = chromosome.size();
for (int i = 0; i < d; ++i) {
sum += chromosome[i] * sin(sqrt(fabs(chromosome[i])));
}
return 418.9829 * d - sum;
}
// Function to calculate fitness for the entire population
vector<double> calculatePopulationFitness(const vector<vector<double> >& population) {
vector<double> fitness(population.size());
for (size_t i = 0; i < population.size(); ++i) {
fitness[i] = calculateFitness(population[i]);
}
return fitness;
}
// Function to calculate average fitness of the population
double calculateAverageFitness(const vector<double>& fitness) {
double totalFitness = accumulate(fitness.begin(), fitness.end(), 0.0);
return totalFitness / fitness.size();
}
// Two-point crossover function
void twoPointCrossover(int parent1Index, int parent2Index, vector<vector<double> >& offspring) {
// Randomly select two crossover points
int crossoverPoint1 = rand() % chromosomeLength;
int crossoverPoint2 = rand() % chromosomeLength;
// Ensure crossoverPoint1 is less than crossoverPoint2
if (crossoverPoint1 > crossoverPoint2) {
swap(crossoverPoint1, crossoverPoint2);
}
// Perform crossover
vector<double> offspring0 = chromosomes[parent1Index];
vector<double> offspring1 = chromosomes[parent2Index];
for (int i = crossoverPoint1; i < crossoverPoint2; ++i) {
swap(offspring0[i], offspring1[i]);
}
// Add offspring to the offspring vector
offspring.push_back(offspring0);
offspring.push_back(offspring1);
}
// Mutation function
void mutate(vector<double>& chromosome) {
// Randomly select two genes to mutate
int mutationGeneIndex1 = rand() % chromosomeLength;
int mutationGeneIndex2 = rand() % chromosomeLength;
// Mutate the selected genes
chromosome[mutationGeneIndex1] = ((rand() / (double)RAND_MAX) * 10.0) - 5.0;
chromosome[mutationGeneIndex2] = ((rand() / (double)RAND_MAX) * 10.0) - 5.0;
}
// Function to replace the least fit individuals in the population with offspring (assuming we want to lower the average fitness)
void steadyStateSelection(vector<vector<double> >& population, const vector<vector<double> >& offspring) {
// Calculate fitness of the population
vector<double> fitness = calculatePopulationFitness(population);
// Create a vector of indices sorted by fitness (ascending)
vector<int> indices(population.size());
iota(indices.begin(), indices.end(), 0); // Initialize with 0, 1, 2, ..., populationSize-1
sort(indices.begin(), indices.end(), [&](int a, int b) {
return fitness[a] < fitness[b]; // Sort by ascending fitness
});
// Replace the least fit individuals with the offspring
for (size_t i = 0; i < offspring.size(); ++i) {
population[indices[indices.size() - 1 - i]] = offspring[i];
}
}
int main() {
// Initialize random seed
srand(static_cast<unsigned int>(time(NULL)));
// Generate initial population of chromosomes
for (int i = 0; i < populationSize; ++i) {
vector<double> chromosome(chromosomeLength);
for (int j = 0; j < chromosomeLength; ++j) {
chromosome[j] = ((rand() / (double)RAND_MAX) * 10.0) - 5.0; // Random gene value between -5 and 5
}
chromosomes.push_back(chromosome);
}
// Calculate initial fitness and average fitness
vector<double> initialFitness = calculatePopulationFitness(chromosomes);
double initialAverageFitness = calculateAverageFitness(initialFitness);
// Output original population before survivor selection
cout << "Original Population Before Survivor Selection:" << endl;
for (size_t i = 0; i < chromosomes.size(); ++i) {
cout << "Individual " << i << ": ";
for (double gene : chromosomes[i]) {
cout << gene << " ";
}
cout << endl;
}
cout << endl;
for (size_t i = 0; i < initialFitness.size(); ++i) {
cout << "Fitness of Individual " << i << ": " << initialFitness[i] << endl;
}
// Select pairs of parents and perform crossover
vector<vector<double> > offspring;
for (int i = 0; i < numberOfOffspring; ++i) {
// Randomly select two parents
int parent1Index = rand() % populationSize;
int parent2Index = rand() % populationSize;
// Perform crossover with probability crossoverProbability
if ((rand() / (double)RAND_MAX) < crossoverProbability) {
twoPointCrossover(parent1Index, parent2Index, offspring);
// Mutation
mutate(offspring[offspring.size() - 2]);
mutate(offspring[offspring.size() - 1]);
}
}
// Replace least fit individuals in the population with offspring
steadyStateSelection(chromosomes, offspring);
// Calculate new fitness and average fitness
vector<double> newFitness = calculatePopulationFitness(chromosomes);
double newAverageFitness = calculateAverageFitness(newFitness);
// Output new population after survivor selection
cout << endl << "New Population After Survivor Selection:" << endl;
for (size_t i = 0; i < chromosomes.size(); ++i) {
cout << "Individual " << i << ": ";
for (double gene : chromosomes[i]) {
cout << gene << " ";
}
cout << endl ;
}
cout << endl;
for (size_t i = 0; i < newFitness.size(); ++i) {
cout << "Fitness of Individual " << i << ": " << newFitness[i] << endl;
}
cout << endl << "Average Fitness Before Survivor Selection: " << initialAverageFitness << endl;
cout << "Average Fitness After Survivor Selection: " << newAverageFitness << endl;
return 0;
}
</code>
<code>the code im trying to run: #include <iostream> #include <vector> #include <cmath> #include <cstdlib> #include <ctime> #include <algorithm> #include <numeric> // For std::iota using namespace std; const int populationSize = 100; // Size of the population const int chromosomeLength = 10; // Length of each chromosome const double crossoverProbability = 0.8; // Probability of crossover const int numberOfOffspring = 10; // Number of offspring to produce vector<vector<double> > chromosomes; // Population of chromosomes // Function to calculate fitness based on Schwefel function double calculateFitness(const vector<double>& chromosome) { double sum = 0.0; int d = chromosome.size(); for (int i = 0; i < d; ++i) { sum += chromosome[i] * sin(sqrt(fabs(chromosome[i]))); } return 418.9829 * d - sum; } // Function to calculate fitness for the entire population vector<double> calculatePopulationFitness(const vector<vector<double> >& population) { vector<double> fitness(population.size()); for (size_t i = 0; i < population.size(); ++i) { fitness[i] = calculateFitness(population[i]); } return fitness; } // Function to calculate average fitness of the population double calculateAverageFitness(const vector<double>& fitness) { double totalFitness = accumulate(fitness.begin(), fitness.end(), 0.0); return totalFitness / fitness.size(); } // Two-point crossover function void twoPointCrossover(int parent1Index, int parent2Index, vector<vector<double> >& offspring) { // Randomly select two crossover points int crossoverPoint1 = rand() % chromosomeLength; int crossoverPoint2 = rand() % chromosomeLength; // Ensure crossoverPoint1 is less than crossoverPoint2 if (crossoverPoint1 > crossoverPoint2) { swap(crossoverPoint1, crossoverPoint2); } // Perform crossover vector<double> offspring0 = chromosomes[parent1Index]; vector<double> offspring1 = chromosomes[parent2Index]; for (int i = crossoverPoint1; i < crossoverPoint2; ++i) { swap(offspring0[i], offspring1[i]); } // Add offspring to the offspring vector offspring.push_back(offspring0); offspring.push_back(offspring1); } // Mutation function void mutate(vector<double>& chromosome) { // Randomly select two genes to mutate int mutationGeneIndex1 = rand() % chromosomeLength; int mutationGeneIndex2 = rand() % chromosomeLength; // Mutate the selected genes chromosome[mutationGeneIndex1] = ((rand() / (double)RAND_MAX) * 10.0) - 5.0; chromosome[mutationGeneIndex2] = ((rand() / (double)RAND_MAX) * 10.0) - 5.0; } // Function to replace the least fit individuals in the population with offspring (assuming we want to lower the average fitness) void steadyStateSelection(vector<vector<double> >& population, const vector<vector<double> >& offspring) { // Calculate fitness of the population vector<double> fitness = calculatePopulationFitness(population); // Create a vector of indices sorted by fitness (ascending) vector<int> indices(population.size()); iota(indices.begin(), indices.end(), 0); // Initialize with 0, 1, 2, ..., populationSize-1 sort(indices.begin(), indices.end(), [&](int a, int b) { return fitness[a] < fitness[b]; // Sort by ascending fitness }); // Replace the least fit individuals with the offspring for (size_t i = 0; i < offspring.size(); ++i) { population[indices[indices.size() - 1 - i]] = offspring[i]; } } int main() { // Initialize random seed srand(static_cast<unsigned int>(time(NULL))); // Generate initial population of chromosomes for (int i = 0; i < populationSize; ++i) { vector<double> chromosome(chromosomeLength); for (int j = 0; j < chromosomeLength; ++j) { chromosome[j] = ((rand() / (double)RAND_MAX) * 10.0) - 5.0; // Random gene value between -5 and 5 } chromosomes.push_back(chromosome); } // Calculate initial fitness and average fitness vector<double> initialFitness = calculatePopulationFitness(chromosomes); double initialAverageFitness = calculateAverageFitness(initialFitness); // Output original population before survivor selection cout << "Original Population Before Survivor Selection:" << endl; for (size_t i = 0; i < chromosomes.size(); ++i) { cout << "Individual " << i << ": "; for (double gene : chromosomes[i]) { cout << gene << " "; } cout << endl; } cout << endl; for (size_t i = 0; i < initialFitness.size(); ++i) { cout << "Fitness of Individual " << i << ": " << initialFitness[i] << endl; } // Select pairs of parents and perform crossover vector<vector<double> > offspring; for (int i = 0; i < numberOfOffspring; ++i) { // Randomly select two parents int parent1Index = rand() % populationSize; int parent2Index = rand() % populationSize; // Perform crossover with probability crossoverProbability if ((rand() / (double)RAND_MAX) < crossoverProbability) { twoPointCrossover(parent1Index, parent2Index, offspring); // Mutation mutate(offspring[offspring.size() - 2]); mutate(offspring[offspring.size() - 1]); } } // Replace least fit individuals in the population with offspring steadyStateSelection(chromosomes, offspring); // Calculate new fitness and average fitness vector<double> newFitness = calculatePopulationFitness(chromosomes); double newAverageFitness = calculateAverageFitness(newFitness); // Output new population after survivor selection cout << endl << "New Population After Survivor Selection:" << endl; for (size_t i = 0; i < chromosomes.size(); ++i) { cout << "Individual " << i << ": "; for (double gene : chromosomes[i]) { cout << gene << " "; } cout << endl ; } cout << endl; for (size_t i = 0; i < newFitness.size(); ++i) { cout << "Fitness of Individual " << i << ": " << newFitness[i] << endl; } cout << endl << "Average Fitness Before Survivor Selection: " << initialAverageFitness << endl; cout << "Average Fitness After Survivor Selection: " << newAverageFitness << endl; return 0; } </code>
the code im trying to run:
#include <iostream>
#include <vector>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <algorithm>
#include <numeric> // For std::iota

using namespace std;

const int populationSize = 100; // Size of the population
const int chromosomeLength = 10; // Length of each chromosome
const double crossoverProbability = 0.8; // Probability of crossover
const int numberOfOffspring = 10; // Number of offspring to produce

vector<vector<double> > chromosomes; // Population of chromosomes

// Function to calculate fitness based on Schwefel function
double calculateFitness(const vector<double>& chromosome) {
    double sum = 0.0;
    int d = chromosome.size();
    for (int i = 0; i < d; ++i) {
    sum += chromosome[i] * sin(sqrt(fabs(chromosome[i])));
}
return 418.9829 * d - sum;
}

// Function to calculate fitness for the entire population
vector<double> calculatePopulationFitness(const vector<vector<double> >& population) {
vector<double> fitness(population.size());
for (size_t i = 0; i < population.size(); ++i) {
    fitness[i] = calculateFitness(population[i]);
}
return fitness;
}

// Function to calculate average fitness of the population
double calculateAverageFitness(const vector<double>& fitness) {
double totalFitness = accumulate(fitness.begin(), fitness.end(), 0.0);
return totalFitness / fitness.size();
}

// Two-point crossover function
void twoPointCrossover(int parent1Index, int parent2Index, vector<vector<double> >& offspring) {
// Randomly select two crossover points
int crossoverPoint1 = rand() % chromosomeLength;
int crossoverPoint2 = rand() % chromosomeLength;

// Ensure crossoverPoint1 is less than crossoverPoint2
if (crossoverPoint1 > crossoverPoint2) {
    swap(crossoverPoint1, crossoverPoint2);
}

// Perform crossover
vector<double> offspring0 = chromosomes[parent1Index];
vector<double> offspring1 = chromosomes[parent2Index];
for (int i = crossoverPoint1; i < crossoverPoint2; ++i) {
    swap(offspring0[i], offspring1[i]);
}

// Add offspring to the offspring vector
offspring.push_back(offspring0);
offspring.push_back(offspring1);
}

// Mutation function
void mutate(vector<double>& chromosome) {
// Randomly select two genes to mutate
int mutationGeneIndex1 = rand() % chromosomeLength;
int mutationGeneIndex2 = rand() % chromosomeLength;

// Mutate the selected genes
chromosome[mutationGeneIndex1] = ((rand() / (double)RAND_MAX) * 10.0) - 5.0;
chromosome[mutationGeneIndex2] = ((rand() / (double)RAND_MAX) * 10.0) - 5.0;
}

// Function to replace the least fit individuals in the population with offspring (assuming we want to lower the average fitness)
void steadyStateSelection(vector<vector<double> >& population, const vector<vector<double> >& offspring) {
// Calculate fitness of the population
vector<double> fitness = calculatePopulationFitness(population);

// Create a vector of indices sorted by fitness (ascending)
vector<int> indices(population.size());
iota(indices.begin(), indices.end(), 0); // Initialize with 0, 1, 2, ..., populationSize-1
sort(indices.begin(), indices.end(), [&](int a, int b) {
    return fitness[a] < fitness[b]; // Sort by ascending fitness
});

    // Replace the least fit individuals with the offspring
    for (size_t i = 0; i < offspring.size(); ++i) {
        population[indices[indices.size() - 1 - i]] = offspring[i];
    }
}

int main() {
    // Initialize random seed
    srand(static_cast<unsigned int>(time(NULL)));

    // Generate initial population of chromosomes
    for (int i = 0; i < populationSize; ++i) {
        vector<double> chromosome(chromosomeLength);
        for (int j = 0; j < chromosomeLength; ++j) {
            chromosome[j] = ((rand() / (double)RAND_MAX) * 10.0) - 5.0; // Random gene value between -5 and 5
        }
        chromosomes.push_back(chromosome);
    }

    // Calculate initial fitness and average fitness
    vector<double> initialFitness = calculatePopulationFitness(chromosomes);
    double initialAverageFitness = calculateAverageFitness(initialFitness);

   // Output original population before survivor selection
    cout << "Original Population Before Survivor Selection:" << endl;
    for (size_t i = 0; i < chromosomes.size(); ++i) {
    cout << "Individual " << i << ": ";
    for (double gene : chromosomes[i]) {
        cout << gene << " ";
    }
    cout << endl;
    }
    cout << endl;
    for (size_t i = 0; i < initialFitness.size(); ++i) {
    cout << "Fitness of Individual " << i << ": " << initialFitness[i] << endl;
    }

    // Select pairs of parents and perform crossover
    vector<vector<double> > offspring;
    for (int i = 0; i < numberOfOffspring; ++i) {
    // Randomly select two parents
    int parent1Index = rand() % populationSize;
    int parent2Index = rand() % populationSize;

    // Perform crossover with probability crossoverProbability
    if ((rand() / (double)RAND_MAX) < crossoverProbability) {
        twoPointCrossover(parent1Index, parent2Index, offspring);

        // Mutation
        mutate(offspring[offspring.size() - 2]);
        mutate(offspring[offspring.size() - 1]);
        }
    }

    // Replace least fit individuals in the population with offspring
    steadyStateSelection(chromosomes, offspring);

    // Calculate new fitness and average fitness
    vector<double> newFitness = calculatePopulationFitness(chromosomes);
    double newAverageFitness = calculateAverageFitness(newFitness);

    // Output new population after survivor selection
    cout << endl << "New Population After Survivor Selection:" << endl;
    for (size_t i = 0; i < chromosomes.size(); ++i) {
    cout << "Individual " << i << ": ";
    for (double gene : chromosomes[i]) {
        cout << gene << " ";
    }
    cout << endl ;
    }
    cout << endl;
    for (size_t i = 0; i < newFitness.size(); ++i) {
    cout <<  "Fitness of Individual " << i << ": " << newFitness[i] << endl;
    }
    cout << endl << "Average Fitness Before Survivor Selection: " << initialAverageFitness << endl;
    cout << "Average Fitness After Survivor Selection: " << newAverageFitness << endl;

    return 0;
    }

fix the error and find out if I made a mistake during the setup of my vscode.

New contributor

Jordan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật