SyN Algorithm for symmetric diffeomorphic image registration ( part1 )

Tried hard to complete the code for diffeomorphic registration of images but evry time I got some challenge to overcome. Please have a look If any one can complete it and run it.
most of it was done except converging criteria. But unnecessarily huge code and bugs made me crazy. Thanks for the help.

symmetric diffeomorphic image registration is better than affine transformation only. It is a non-linear process.

    import numpy as np
    import numpy.linalg as npl
    import abc
    from enum import Enum
    
    class VerbosityLevels(Enum):
        DEBUG = 0
        DIAGNOSE = 1
        STATUS = 2
        DEFAULT = 3
    
    class RegistrationStages(Enum):
        OPT_START = 0
        SCALE_START = 1
        SCALE_END = 2
        ITER_START = 3
        ITER_END = 4
        OPT_END = 5
    
    class DiffeomorphicRegistration(metaclass=abc.ABCMeta):
        def __init__(self, metric=None):
            if metric is None:
                raise ValueError('The metric cannot be None')
            self.metric = metric
            self.dim = metric.dim
    
        def set_level_iters(self, level_iters):
            self.levels = len(level_iters) if level_iters else 0
            self.level_iters = level_iters
    
    class DiffeomorphicRegistration(metaclass=abc.ABCMeta):
        
        @abc.abstractmethod
        def optimize(self, static, moving, static_grid2world=None,
                     moving_grid2world=None, prealign=None):
            if self.verbosity == VerbosityLevels.DEBUG:
                if prealign is not None:
                    logger.info("Pre-align: " + str(prealign))
    
            # Initialization
            self._init_optimizer(static.astype(np.float32), moving.astype(np.float32),
                     static_grid2world, moving_grid2world, prealign)
    
            # Optimization loop
            while not self._converged():
                self._iterate()
    
            # Finalization
            self._finalize_optimizer()
    
            # Return the diffeomorphic map
            return self.get_map()
        
        
        @abc.abstractmethod
        def get_map(self):
            if self.static_to_ref is None:
                raise ValueError("Diffeormorphic map cannot be obtained without running the optimizer.")
            return self.static_to_ref
    
        
    import logging
    
    # Create a logger instance
    logger = logging.getLogger(__name__)
    
    class SymmetricDiffeomorphicRegistration(DiffeomorphicRegistration):
        def __init__(self, metric, max_iterations=1000,  level_iters=None, step_length=0.25, 
                     ss_sigma_factor=0.2, opt_tol=1e-5, inv_iter=20, 
                     inv_tol=1e-3, callback=None, verbosity=VerbosityLevels.DEFAULT):
            super().__init__()  # Remove the metric argument
            self.metric = metric
            self.max_iterations = max_iterations
            self.levels = 0  # Initialize levels attribute        
            self.niter = 0  
            if level_iters is None:
                level_iters = [100, 100, 25]
            self.metric = metric  # Set the metric separately
            self.level_iters = level_iters
            self.step_length = step_length
            self.ss_sigma_factor = ss_sigma_factor
            self.opt_tol = opt_tol
            self.inv_iter = inv_iter
            self.inv_tol = inv_tol
            self.callback = callback
            self.verbosity = verbosity
            self.static_to_ref = None  # Initialize static_to_ref attribute
            self.moving_to_ref = None  # Initialize moving_to_ref attribute
            self.current_level = 0  
            
        def optimize(self, static, moving, static_grid2world=None,
                     moving_grid2world=None, prealign=None):
            if self.verbosity == VerbosityLevels.DEBUG:
                if prealign is not None:
                    logger.info("Pre-align: " + str(prealign))
    
            self._init_optimizer(static.astype(np.float32), moving.astype(np.float32),
                                 static_grid2world, moving_grid2world, prealign)
    
            # Optimization loop
            while not self._converged():
                self._iterate()
    
            # Finalization
            self._finalize_optimizer()
    
            # Ensure forward and backward transformations are set
            self.static_to_ref.compute_forward()
            self.moving_to_ref.compute_forward()
            self.static_to_ref.compute_backward()
            self.moving_to_ref.compute_backward()
    
            # Compute inversion error
            residual, stats = self.static_to_ref.compute_inversion_error()
            if self.verbosity >= VerbosityLevels.DIAGNOSE:
                logger.info('Static-Reference Residual error: %0.6f (%0.6f)'
                            % (stats[1], stats[2]))
    
            residual, stats = self.moving_to_ref.compute_inversion_error()
            if self.verbosity >= VerbosityLevels.DIAGNOSE:
                logger.info('Moving-Reference Residual error: %0.6f (%0.6f)'
                            % (stats[1], stats[2]))
    
            # Return the diffeomorphic map
            return self.static_to_ref
    
        def _converged(self):  #########################################################
            # Check if the number of iterations has reached a predefined limit
            return self.niter >= self.max_iterations
    
        def get_map(self):
            if self.static_to_ref is None:
                raise ValueError("Diffeormorphic map cannot be obtained without running the optimizer.")
            return self.static_to_ref
        
        def _init_optimizer(self, static, moving, static_grid2world,
                            moving_grid2world, prealign):
            # Initialize the optimizer here
            self.static_image = static
            self.moving_image = moving
            self.static_grid2world = static_grid2world
            self.moving_grid2world = moving_grid2world
            self.prealign = prealign
    
            # Initialize other necessary components
            self.static_ss = MultiscaleImage(static, static_grid2world)
            self.moving_ss = MultiscaleImage(moving, moving_grid2world)
            self.current_level = self.static_ss.levels - 1
    
            # Initialize transformation models
            self.static_to_ref = DiffeomorphicMap(self.static_ss.get_domain_grid(self.current_level),
                                                  self.static_ss.get_affine(self.current_level))
            self.moving_to_ref = DiffeomorphicMap(self.moving_ss.get_domain_grid(self.current_level),
                                                  self.moving_ss.get_affine(self.current_level))
    #         self.current_level = 0         
    
            
    
            # Initialize other parameters and settings
            # For example:
            # self.metric.set_static_image()
            # self.metric.set_moving_image()
    
            # Additional initialization steps as needed    
    
        def _end_optimizer(self):
            del self.moving_ss
            del self.static_ss
    
        def _iterate(self):
            current_moving = self.moving_ss.get_image(self.current_level)
            current_static = self.static_ss.get_image(self.current_level)
            current_disp_shape = self.static_ss.get_domain_shape(self.current_level)
            current_disp_grid2world = self.static_ss.get_affine(self.current_level)
            current_disp_world2grid = self.static_ss.get_affine_inv(self.current_level)
            current_disp_spacing = self.static_ss.get_spacing(self.current_level)
            
            self.static_to_ref.set_backward_transform(lambda x: x)  # Placeholder transformation
            self.moving_to_ref.set_backward_transform(lambda x: x)
            
            wstatic = self.static_to_ref.transform_inverse(current_static, order=1, mode='constant', cval=0.0)
    #         wstatic = self.static_to_ref.transform_inverse(current_static, 'linear', None, current_disp_shape, current_disp_grid2world)
            wmoving = self.moving_to_ref.transform_inverse(current_moving, 'linear', None, current_disp_shape, current_disp_grid2world)
    
        
        
           # Optimization logic here...
            # Example of incrementing iterations and managing levels
            self.niter += 1
            if self.niter % self.level_iters[self.current_level] == 0:
                self.current_level += 1    
        
        
        
            self.metric.set_moving_image(wmoving, current_disp_grid2world, current_disp_spacing, self.static_direction)
            self.metric.use_moving_image_dynamics(current_moving, self.moving_to_ref.inverse())
            self.metric.set_static_image(wstatic, current_disp_grid2world, current_disp_spacing, self.static_direction)
            self.metric.use_static_image_dynamics(current_static, self.static_to_ref.inverse())
            self.metric.initialize_iteration()
            if self.callback is not None:
                self.callback(self, RegistrationStages.ITER_START)
    
            fw_step = np.array(self.metric.compute_forward())
            fw_step = self.__set_no_boundary_displacement(fw_step)
            nrm = np.sqrt(np.sum((fw_step/current_disp_spacing)**2, -1)).max()
            if nrm > 0:
                fw_step /= nrm
    
            self.static_to_ref.forward, md_forward = self.update(self.static_to_ref.forward, fw_step, current_disp_world2grid, self.step_length)
            del fw_step
    
            fw_energy = self.metric.get_energy()
    
            bw_step = np.array(self.metric.compute_backward())
            bw_step = self.__set_no_boundary_displacement(bw_step)
            nrm = np.sqrt(np.sum((bw_step/current_disp_spacing) ** 2, -1)).max()
            if nrm > 0:
                bw_step /= nrm
    
            self.moving_to_ref.forward, md_backward = self.update(self.moving_to_ref.forward, bw_step, current_disp_world2grid, self.step_length)
            del bw_step
    
            bw_energy = self.metric.get_energy()
            der = np.inf
            n_iter = len(self.energy_list)
            if len(self.energy_list) >= self.energy_window:
                der = self._get_energy_derivative()
    
            self.energy_list.append(fw_energy + bw_energy)
    
            self.__invert_models(current_disp_world2grid, current_disp_spacing)
    
            if self.callback is not None:
                self.callback(self, RegistrationStages.ITER_END)
            self.metric.free_iteration()
    
            return der
    
    
        def __set_no_boundary_displacement(self, step):
            step[0, ...] = 0
            step[:, 0, ...] = 0
            step[-1, ...] = 0
            step[:, -1, ...] = 0
            if self.dim == 3:
                step[:, :, 0, ...] = 0
                step[:, :, -1, ...] = 0
            return step
    
        def __invert_models(self, current_disp_world2grid, current_disp_spacing):
            self.static_to_ref.backward = np.array(self.invert_vector_field(self.static_to_ref.forward, current_disp_world2grid, current_disp_spacing, self.inv_iter, self.inv_tol))
            self.moving_to_ref.backward = np.array(self.invert_vector_field(self.moving_to_ref.forward, current_disp_world2grid, current_disp_spacing, self.inv_iter, self.inv_tol, self.moving_to_ref.backward))
            self.static_to_ref.forward = np.array(self.invert_vector_field(self.static_to_ref.backward, current_disp_world2grid, current_disp_spacing, self.inv_iter, self.inv_tol, self.static_to_ref.forward))
            self.moving_to_ref.forward = np.array(self.invert_vector_field(self.moving_to_ref.backward, current_disp_world2grid, current_disp_spacing, self.inv_iter, self.inv_tol, self.moving_to_ref.forward))
    
            
            
            
    
        def _approximate_derivative_direct(self, x, y):
            x = np.asarray(x)
            y = np.asarray(y)
            X = np.row_stack((x**2, x, np.ones_like(x)))
            XX = X.dot(X.T)
            b = X.dot(y)
            beta = npl.solve(XX, b)
            x0 = 0.5 * len(x)
            y0 = 2.0 * beta[0] * x0 + beta[1]
            return y0
    
        def _get_energy_derivative(self):
            n_iter = len(self.energy_list)
            if n_iter < self.energy_window:
                raise ValueError('Not enough data to fit the energy profile')
            x = range(self.energy_window)
            y = self.energy_list[(n_iter - self.energy_window):n_iter]
            ss = sum(y)
            if ss != 0:  # avoid division by zero
                ss = -ss if ss > 0 else ss
                y = [v / ss for v in y]
            der = self._approximate_derivative_direct(x, y)
            return der
    
        def _optimize(self):
            self.full_energy_profile = []
            if self.callback is not None:
                self.callback(self, RegistrationStages.OPT_START)
            for level in range(self.levels - 1, -1, -1):
                if self.verbosity >= VerbosityLevels.STATUS:
                    logger.info('Optimizing level %d' % level)
    
                self.current_level = level
    
                if level < self.levels - 1:
                    expand_factors = self.static_ss.get_expand_factors(level+1, level)
                    new_shape = self.static_ss.get_domain_shape(level)
                    self.static_to_ref.expand_fields(expand_factors, new_shape)
                    self.moving_to_ref.expand_fields(expand_factors, new_shape)
    
                self.niter = 0
                self.energy_list = []
                derivative = np.inf
    
                if self.callback is not None:
                    self.callback(self, RegistrationStages.SCALE_START)
    
                while ((self.niter < self.level_iters[self.levels - 1 - level]) and
                       (self.opt_tol < derivative)):
                    derivative = self._iterate()
                    self.niter += 1
    
                self.full_energy_profile.extend(self.energy_list)
    
                if self.callback is not None:
                    self.callback(self, RegistrationStages.SCALE_END)
    
            residual, stats = self.static_to_ref.compute_inversion_error()
            if self.verbosity >= VerbosityLevels.DIAGNOSE:
                logger.info('Static-Reference Residual error: %0.6f (%0.6f)'
                            % (stats[1], stats[2]))
    
            residual, stats = self.moving_to_ref.compute_inversion_error()
            if self.verbosity >= VerbosityLevels.DIAGNOSE:
                logger.info('Moving-Reference Residual error :%0.6f (%0.6f)'
                            % (stats[1], stats[2]))
    
            self.static_to_ref = self.moving_to_ref.warp_endomorphism(
                self.static_to_ref.inverse()).inverse()
    
            residual, stats = self.static_to_ref.compute_inversion_error()
            if self.verbosity >= VerbosityLevels.DIAGNOSE:
                logger.info('Final residual error: %0.6f (%0.6f)' % (stats[1],
                            stats[2]))
            if self.callback is not None:
                self.callback(self, RegistrationStages.OPT_END)
                
                
                
                
                
    class SimpleSimilarityMetric:
        def __init__(self, dim=None):
            self.dim = dim
            self.mask0 = None  # Add mask0 attribute and initialize it to None
    
        def set_static_image(self, static_image):
            self.static_image = static_image
            if self.dim is None:
                self.dim = static_image.ndim
    
        def set_moving_image(self, moving_image):
            self.moving_image = moving_image
            if self.dim is None:
                self.dim = moving_image.ndim
    
        def set_mask0(self, mask0):  # Add method to set mask0
            self.mask0 = mask0
    
        def evaluate(self):
            ssd = np.sum((self.static_image - self.moving_image)**2)
            return ssd
    
    class MultiscaleImage:
        def __init__(self, image, grid2world):
            self.image = image
            self.grid2world = grid2world
            self.levels = 3  # Example: Set the number of levels for demonstration
    
        def get_domain_grid(self, level):
            # Assume each level is a downsampled version of the original image
            # and the grid is a tuple (x, y) representing the domain grid
            # We'll just return a                                                       
            # simple grid for demonstration purposes
            if level == 0:
                return np.mgrid[0:self.image.shape[0], 0:self.image.shape[1]]
            else:
                # Downsample the grid based on the level
                downsample_factor = 2 ** level
                downsampled_shape = (self.image.shape[0] // downsample_factor, self.image.shape[1] // downsample_factor)
                return np.mgrid[0:downsampled_shape[0], 0:downsampled_shape[1]]
    
        def get_affine(self, level):
            # Assume each level has a corresponding affine transformation
            # We'll just return a simple identity matrix for demonstration purposes
            return np.eye(3)
        
        def get_affine_inv(self, level):
            """
            Get the inverse affine transformation matrix at the specified level.
            Parameters:
            - level (int): The level for which to get the inverse affine transformation matrix.
            Returns:
            - ndarray: The inverse affine transformation matrix at the specified level.
            """
            # Ensure level is within valid range
            if level < 0 or level >= self.levels:
                raise ValueError("Invalid level specified.")
    
            # Example implementation: Return the inverse of the grid2world transformation matrix
            return np.linalg.inv(self.grid2world)    
        
        def get_domain_shape(self, level):
            """
            Get the shape of the image domain at the specified level.
            Parameters:
            - level (int): The level for which to get the domain shape.
            Returns:
            - tuple: The shape of the image domain at the specified level.
            """
            # Ensure level is within valid range
            if level < 0 or level >= self.levels:
                raise ValueError("Invalid level specified.")
    
            # Return the shape of the image at the specified level
            return self.image.shape    
        
        def get_spacing(self, level):
            """
            Get the spacing (voxel size) at the specified level.
            Parameters:
            - level (int): The level for which to get the spacing.
            Returns:
            - tuple: The spacing (voxel size) at the specified level.
            """
            # Ensure level is within valid range
            if level < 0 or level >= self.levels:
                raise ValueError("Invalid level specified.")    
        
        def get_image(self, level):
            """
            Get the image at the specified level.
            Parameters:
            - level (int): The level of the image to retrieve.
            Returns:
            - ndarray: The image at the specified level.
            """
            # Ensure level is within valid range
            if level < 0 or level >= self.levels:
                raise ValueError("Invalid level specified.")
    
            # Generate Gaussian pyramid
            pyramid = self.gaussian_pyramid(levels=self.levels, sigmas=[1.0] * self.levels, down_facts=[2] * self.levels)
    
            # Return the image at the specified level
            return pyramid[level]
    
        def gaussian_pyramid(self, levels, sigmas, down_facts):
            new_imgs = [self.image]
            for i in range(levels):
                image = new_imgs[-1]
                smooth_img = gaussian_filter(image, sigma=sigmas[i])
                small_img = downsample(smooth_img, factor=  down_facts[i]  )
                new_imgs.append(small_img)
            return new_imgs    


    import numpy as np
    from scipy.ndimage import map_coordinates
    import numpy as np
    from scipy.ndimage import gaussian_filter, zoom

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật