Scaling locks in high concurrency web apps [closed]

Our web application has a certain resource type that is shared accross multiple users, and may thus be read and written by anyone at anytime. We resorted to the usual suspects, database transactions and software locks with expiration times, and with a low user base and low concurrency this worked well and prevented many race condition scenarios that would otherwise have happened.

We are now slowly starting to scale and are finding out that with a few hundred concurrent users, ocassionally (about once a day) a request fails due to either timing out waiting for a lock (which I assume happens when many attempt to get or are waiting for the same lock at the same time) or by database deadlocks. Today, this is only a minor annoyance, since it’s still relatively infrequent and the affected user can reattempt the request and it will usually get through. But we are naturally concerned that this will not scale well.

How is this scenario typically addressed? I can only imagine it’s a relatively common problem to have, but I’m not sure what specific techniques can be applied here without having to redesign the entire application. We’re looking into lock-free designs currently, but at a first glance it would seem like rewritting our application to be lock-free would be a titanic task. Any sort of advice would be appreciated.

4

Welcome to the deep, dark recesses of the Concurrency Jungle! This is where many app developers fear to tread–and fear it for good reason.

@kdgregory gets it exactly right: This is not one problem, but a very large, very sticky class of problems.

Most hard concurrency problems are addressable at scale, with sufficient effort and investment. None, however, are particularly simple, easy, or cheap. All of the world’s high-concurrency solutions–e.g. the insides of operating systems and databases, high-scale message passing and trading systems, financial markets, travel booking systems, global web apps–have received enormous ongoing development efforts and investments, in most cases over years or decades. Most of them have required fundamental engine rewrites/roto-tilling to reach new scale plateaus.

It sounds as if you are at one of those plateaus. Your fear about “having to redesign the entire application” and “at a first glance it would seem [to] be a titanic task” are well-founded. If you aren’t daunted at the effort involved in scaling up a highly-concurrent app, you just don’t understand concurrency.

I would start by reconsidering the “certain resource type that is shared accross multiple users, and may thus be read and written by anyone at anytime.” Is it truly possible for any and every user to share this resource / these resources? Or is it just that many users may share each? That’s a slightly subtle distinction. If truly everyone may share (M:1), that’s a genuine individual bottleneck. If it’s more accurately M:N, and the users that can share each of the N can be grouped or partitioned, then it may be more readily addressed, for example by

  • Sharding Sharding would partition users onto different servers, along with their related critical resource(s). Organizing by shards/partitions isn’t automagically easy, but it’s easier than a lot of other concurrency strategies, given that it nicely strength reduces the problem into smaller sub-problems, each of which is more manageable and performant. If pure sharding isn’t enough, it’s sometimes possible to combine sharding with function or data shipping: that is, sharing for the common cases, then move shared computations to where the data is, or dynamically recognize users that could be better migrated to other shards, as what other resources they interact with are discovered. And/or if your central shared resource is read-mostly or read-more-often-than-write, it can possibly also can be replicated across shards.

Truly complete sharing problems are harder–especially if you have heavy updates to your critical shared resources.

  • Scale Up. For some scale ranges, this can be addressed with “scale up” servers–buying much bigger, shared-memory servers. The servers are a lot more expensive than traditional web gear, but the large memory complement and extremely high-speed system interconnect goes a long way to solving communication/coordination problems. Even if the gear is expensive, you don’t have to worry so much about software rewrites, which can make them an economic win. (“Send in the mainframes!”)
  • Parallel Scale Up. A fallback from there are logically scale-up data stores: parallel database and middleware engines (e.g. DB2, NonStop SQL, Teradata) that, while parallel internally, appear to your code as unified, less-parallel services. (Internally such servers often use InfiniBand or proprietary low-lantency system-to-system interconnects, making them a hybrid between full “scale up” and distributed servers.)

Many web apps, however, skip the various levels of “scale up” solutions and head directly for the final frontier:

  • Fully distributed. Rewrite to use middleware/services with exposed parallelism. Examples would be Hadoop, Amazon Web Services’s
    SimpleDB database and SQS queueing services, the parallelism models of many NoSQL databases, and the API semantics of
    most high-scale web services (e.g. Twitter). To use these, developers must embrace much different and usually much weaker concurrency semantics than traditional databases offer (e.g. “eventual consistency”) and must accept the responsibility for app-managed concurrency (also a weaker semantic and service level than app developers have been accustomed to).
    This preference for exposed parallelism in web apps is often cultural, since so many web apps are “green
    fields” and there
    is a strong preference for scale-out strategies and “parallel
    everything” (really, “distributed everything,” since even scale-up
    systems are highly parallel).

This final “entirely distributed, parallelism exposed” infrastructure is popular among the highest scale web apps (e.g. Google, Facebook, Twitter), but it’s also where your “large rewrite effort” fear comes in most directly, because adopting these would likely change the level at which your app manages interactions/sharing. I’d suggest reviewing the opportunities for the more modest sharding and/or scale-up strategies before diving into the full “eventual consistency” and “rewrite for different sharing semantics” thickets.

3

Would it be possible to use an update log approach? That is, instead of directly updating the resource, code would simply write an update entry in a table/queue/whatever-makes-sense and a periodic task (or some other mechanism) applies the updates to the resource. Now you only have lock contention on the log, which should be significantly less than contention for your shared resource.

1

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật