What I want to accomplish is that run a python script (in my case agent.py) inside a Spring Boot project via GraalVM.
I’ve installed GraalVM (ce jdk 21) and give it a path. Also define in the project structure and changed the pom.xml according to graalvm and graalvm’s python. Even though it gives an error that torch module couldn’t be found. I’ve also a conda env which has torch installed.
here’s the agent.py based on the this project, with slight changes
import torch
import random
import numpy as np
from collections import deque
import pandas as pd
import platform
import time
from game import SnakeGameAI, Direction, Point
from model import Linear_QNet, QTrainer
from helper import plot
MAX_MEMORY = 100_000
BATCH_SIZE = 1000
LR = 0.001
class Agent:
def __init__(self):
self.n_games = 0
self.epsilon = 0 # randomness
self.gamma = 0.9 # discount rate
self.memory = deque(maxlen=MAX_MEMORY) # popleft()
self.model = Linear_QNet(11, 256, 3)
self.trainer = QTrainer(self.model, lr=LR, gamma=self.gamma)
self.metrics = []
self.start_time = time.time()
def get_state(self, game):
head = game.snake[0]
point_l = Point(head.x - 20, head.y)
point_r = Point(head.x + 20, head.y)
point_u = Point(head.x, head.y - 20)
point_d = Point(head.x, head.y + 20)
dir_l = game.direction == Direction.LEFT
dir_r = game.direction == Direction.RIGHT
dir_u = game.direction == Direction.UP
dir_d = game.direction == Direction.DOWN
state = [
# Danger straight
(dir_r and game.is_collision(point_r)) or
(dir_l and game.is_collision(point_l)) or
(dir_u and game.is_collision(point_u)) or
(dir_d and game.is_collision(point_d)),
# Danger right
(dir_u and game.is_collision(point_r)) or
(dir_d and game.is_collision(point_l)) or
(dir_l and game.is_collision(point_u)) or
(dir_r and game.is_collision(point_d)),
# Danger left
(dir_d and game.is_collision(point_r)) or
(dir_u and game.is_collision(point_l)) or
(dir_r and game.is_collision(point_u)) or
(dir_l and game.is_collision(point_d)),
# Move direction
dir_l,
dir_r,
dir_u,
dir_d,
# Food location
game.food.x < game.head.x, # food left
game.food.x > game.head.x, # food right
game.food.y < game.head.y, # food up
game.food.y > game.head.y # food down
]
return np.array(state, dtype=int)
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done)) # popleft if MAX_MEMORY is reached
def train_long_memory(self):
if len(self.memory) > BATCH_SIZE:
mini_sample = random.sample(self.memory, BATCH_SIZE) # list of tuples
else:
mini_sample = self.memory
states, actions, rewards, next_states, dones = zip(*mini_sample)
self.trainer.train_step(states, actions, rewards, next_states, dones)
#for state, action, reward, next_state, done in mini_sample:
# self.trainer.train_step(state, action, reward, next_state, done)
def train_short_memory(self, state, action, reward, next_state, done):
self.trainer.train_step(state, action, reward, next_state, done)
def get_action(self, state):
# random moves: tradeoff exploration / exploitation
self.epsilon = 80 - self.n_games
final_move = [0,0,0]
if random.randint(0, 200) < self.epsilon:
move = random.randint(0, 2)
final_move[move] = 1
else:
state0 = torch.tensor(state, dtype=torch.float)
prediction = self.model(state0)
move = torch.argmax(prediction).item()
final_move[move] = 1
return final_move
def save_metrics_excel(self, file_name='metrics.xlsx'):
hardware_info = {
'system': platform.system(),
'machine': platform.machine(),
'platform': platform.platform(),
'processor': platform.processor(),
'cpu_count': torch.cuda.device_count() if torch.cuda.is_available() else 0,
'gpu': torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'None'
}
total_time = time.time() - self.start_time
data = {
'hardware_info': hardware_info,
'total_training_time': total_time,
'metrics': self.metrics
}
# Flatten data for the Excel file
metrics_df = pd.DataFrame(self.metrics)
hardware_df = pd.DataFrame([hardware_info])
training_time_df = pd.DataFrame([{'total_training_time': total_time}])
with pd.ExcelWriter(file_name) as writer:
metrics_df.to_excel(writer, sheet_name='Metrics', index=False)
hardware_df.to_excel(writer, sheet_name='Hardware', index=False)
training_time_df.to_excel(writer, sheet_name='Training Time', index=False)
def train():
plot_scores = []
plot_mean_scores = []
total_score = 0
record = 0
agent = Agent()
game = SnakeGameAI()
while True:
# get old state
state_old = agent.get_state(game)
# get move
final_move = agent.get_action(state_old)
# perform move and get new state
reward, done, score = game.play_step(final_move)
state_new = agent.get_state(game)
# train short memory
agent.train_short_memory(state_old, final_move, reward, state_new, done)
# remember
agent.remember(state_old, final_move, reward, state_new, done)
if done:
# train long memory, plot result
game.reset()
agent.n_games += 1
agent.train_long_memory()
if score > record:
record = score
agent.model.save()
print('Game', agent.n_games, 'Score', score, 'Record:', record)
plot_scores.append(score)
total_score += score
mean_score = total_score / agent.n_games
plot_mean_scores.append(mean_score)
plot(plot_scores, plot_mean_scores)
# Collect metrics
agent.metrics.append({
'Game': agent.n_games,
'Score': score,
'Record': record,
'Mean Score': mean_score,
'Timestamp': time.strftime('%Y-%m-%d %H:%M:%S', time.localtime())
})
# Save metrics to Excel periodically
if agent.n_games % 10 == 0: # Save every 10 games
agent.save_metrics_excel()
# Return a summary message
return f'Training completed. Total games: {agent.n_games}, Final score: {score}, Record: {record}'
if __name__ == '__main__':
train()
an the Spring Boot side
package com.rocksoft.denemeGraalVM;
import org.graalvm.polyglot.Context;
import org.graalvm.polyglot.Source;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.stereotype.Service;
import java.io.File;
import java.io.IOException;
@Service
public class SnakeGameService {
@Value("${python.script.path}")
private String scriptPath;
public void runGame() {
try {
// GraalVM context for Python execution
Context context = Context.newBuilder("python")
.allowAllAccess(true)
.build();
// Load and evaluate the Python script
Source source = Source.newBuilder("python", new File(scriptPath)).build();
context.eval(source);
org.graalvm.polyglot.Value result = context.getBindings("python").getMember("train").execute();
String gameStatus = result.asString();
// Handle the result
System.out.println("Game executed successfully. Status: " + gameStatus);
} catch (IOException e) {
e.printStackTrace();
System.err.println("Failed to load the Python script: " + e.getMessage());
} catch (Exception e) {
e.printStackTrace();
System.err.println("Error during Python script execution: " + e.getMessage());
}
}
@Scheduled(fixedRate = 60000) // runs every 60 seconds
public void scheduledGameRun() {
runGame();
}
}
also the dependencies I used
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.graalvm.sdk</groupId>
<artifactId>graal-sdk</artifactId>
<version>23.1.2</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.graalvm.polyglot/python-community -->
<dependency>
<groupId>org.graalvm.polyglot</groupId>
<artifactId>python-community</artifactId>
<version>23.1.2</version>
<type>pom</type>
<scope>runtime</scope>
</dependency>
</dependencies>
and the error
ModuleNotFoundError: No module named 'torch'
at <python> <module>(Unknown)
at org.graalvm.polyglot.Context.eval(Context.java:402)
at com.rocksoft.denemeGraalVM.SnakeGameService.runGame(SnakeGameService.java:27)
at com.rocksoft.denemeGraalVM.SnakeGameService.scheduledGameRun(SnakeGameService.java:46)
at java.base/jdk.internal.reflect.DirectMethodHandleAccessor.invoke(DirectMethodHandleAccessor.java:103)
at java.base/java.lang.reflect.Method.invoke(Method.java:580)
at org.springframework.scheduling.support.ScheduledMethodRunnable.runInternal(ScheduledMethodRunnable.java:130)
at org.springframework.scheduling.support.ScheduledMethodRunnable.lambda$run$2(ScheduledMethodRunnable.java:124)
at io.micrometer.observation.Observation.observe(Observation.java:499)
at org.springframework.scheduling.support.ScheduledMethodRunnable.run(ScheduledMethodRunnable.java:124)
at org.springframework.scheduling.support.DelegatingErrorHandlingRunnable.run(DelegatingErrorHandlingRunnable.java:54)
at java.base/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:572)
at java.base/java.util.concurrent.FutureTask.runAndReset(FutureTask.java:358)
at java.base/java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:305)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1144)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:642)
at java.base/java.lang.Thread.run(Thread.java:1583)
Error during Python script execution: ModuleNotFoundError: No module named 'torch'
I’m open to any suggestions.