n = 128393532851463575343089974408848099857979358442919384244000744053339479654557691794114605827105884545240515605112453686433508264824840575897640756564360373615937755743038201363814617682765101064651503434978938431452409293245855062934837618374997956788830791719002612108253528457601645424542240025303582528541
e = 65537
c = 93825584976187667358623690800406736193433562907249950376378278056949067505651948206582798483662803340120930066298960547657544217987827103350739742039606274017391266985269135268995550801742990600381727708443998391878164259416326775952210229572031793998878110937636005712923166229535455282012242471666332812788
these are the values given to me , i am aware that i’d have to factorise the modulus , but in this case the modulus itself is prime , can someone solve it and explain how to ?
CTF DESCRIPTION: Found these keys… wonder what they do…
I tried factorising n only to find out that it’s prime .
Sarvesh is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.