I create a lot of columns via summarize and delete columns that I don’t need in a second step. Another option would be to create each column separately and then join them using join, which is probably not faster.
The program code currently looks like this:
<code>Data <- Data %>%
group_by_at(group_by_Vektor) %>%
summarize(var_1 = sum(var_1),
var_2 = sum(var_2),
...
var_n = sum(var_n),
.groups = 'drop')
if (!condition_1) {
Data <- select(Data, -var_1))
}
if (!condition_2) {
Data <- select(Data, -var_2))
}
...
if (!condition_n) {
Data <- select(Data, -var_2))
}
</code>
<code>Data <- Data %>%
group_by_at(group_by_Vektor) %>%
summarize(var_1 = sum(var_1),
var_2 = sum(var_2),
...
var_n = sum(var_n),
.groups = 'drop')
if (!condition_1) {
Data <- select(Data, -var_1))
}
if (!condition_2) {
Data <- select(Data, -var_2))
}
...
if (!condition_n) {
Data <- select(Data, -var_2))
}
</code>
Data <- Data %>%
group_by_at(group_by_Vektor) %>%
summarize(var_1 = sum(var_1),
var_2 = sum(var_2),
...
var_n = sum(var_n),
.groups = 'drop')
if (!condition_1) {
Data <- select(Data, -var_1))
}
if (!condition_2) {
Data <- select(Data, -var_2))
}
...
if (!condition_n) {
Data <- select(Data, -var_2))
}
I am looking for something like this:
<code>Data <- Data %>%
group_by_at(group_by_Vektor) %>%
summarize(if(condition_1, var_1 = sum(var_1)),
if(condition_2, var_2 = sum(var_2),
...
if(condition_n, var_n = sum(var_n)),
.groups = 'drop')
</code>
<code>Data <- Data %>%
group_by_at(group_by_Vektor) %>%
summarize(if(condition_1, var_1 = sum(var_1)),
if(condition_2, var_2 = sum(var_2),
...
if(condition_n, var_n = sum(var_n)),
.groups = 'drop')
</code>
Data <- Data %>%
group_by_at(group_by_Vektor) %>%
summarize(if(condition_1, var_1 = sum(var_1)),
if(condition_2, var_2 = sum(var_2),
...
if(condition_n, var_n = sum(var_n)),
.groups = 'drop')
Thank you very much!
Roland
New contributor
user25756456 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.