I am trying to fine tune “Llama-2-7b-chat-hf” Model with “mlabonne/guanaco-llama2-1k” in Google Colab with T4 runtime environment.
I am using Qlora technique to fine tune this model. Below is the code I am using.
import os
import torch
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
HfArgumentParser,
TrainingArguments,
pipeline,
logging,
)
from peft import LoraConfig, PeftModel
from trl import SFTTrainer
# Model from Hugging Face hub
base_model = "NousResearch/Llama-2-7b-chat-hf"
# New instruction dataset
guanaco_dataset = "mlabonne/guanaco-llama2-1k"
# Fine-tuned model
new_model = "llama-2-7b-chat-guanaco"
# Load Dataset
dataset = load_dataset(guanaco_dataset, split="train")
compute_dtype = getattr(torch, "float16")
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=False,
)
# Load base model
model = AutoModelForCausalLM.from_pretrained(
base_model,
quantization_config=quant_config,
device_map={"": 0}
)
model.config.use_cache = False
model.config.pretraining_tp = 1
# Load LLaMA tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
# Load LoRA configuration
peft_args = LoraConfig(
lora_alpha=16,
lora_dropout=0.1,
r=64,
bias="none",
task_type="CAUSAL_LM",
)
# Set training parameters
training_params = TrainingArguments(
output_dir="./results",
num_train_epochs=1,
per_device_train_batch_size=3,
gradient_accumulation_steps=1,
optim="paged_adamw_32bit",
save_steps=25,
logging_steps=25,
learning_rate=2e-4,
weight_decay=0.001,
fp16=False,
bf16=False,
max_grad_norm=0.3,
max_steps=-1,
warmup_ratio=0.03,
group_by_length=True,
lr_scheduler_type="constant",
report_to="tensorboard"
)
# Set supervised fine-tuning parameters
trainer = SFTTrainer(
model=model,
train_dataset=dataset,
peft_config=peft_args,
dataset_text_field="text",
max_seq_length=None,
tokenizer=tokenizer,
args=training_params,
packing=False,
)
# Train model
trainer.train()
After running the last code, I was getting the below error.
When “per_device_train_batch_size=4”, I got this error.
Out of memory Error
And, “When per_device_train_batch_size=3”, I got this error.
Out of memory error
I have tried with changing per_device_train_batch_size=
to 3,4,5,6 but not working for me.
Also tried
# Set the environment variable
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
# Verify that the environment variable is set
print(os.environ["PYTORCH_CUDA_ALLOC_CONF"])
And lastly
torch.cuda.empty_cache()
Nothing worked for me.
Raj Kumar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.