I have written an algorithm trading strategy with the parameters gap_candles and Fib_back_candles and tried to use optuna for the Hyperparameter Tuning.
It should try about 480 combinations but stops after 17 trials.
The code doesn’t stop but he doesn’t calculate new trials.
import algotrad_signals as ats
from initial_parameters import start_date, end_date, ticker_list, stock_data_list, back_candles
from datetime import datetime
from itertools import product
import gc
import optuna
import math
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import logging
import psutil
import os
from concurrent.futures import ProcessPoolExecutor
# Output preparation and deactivate warnings
desired_width = 320
pd.set_option('display.width', desired_width)
pd.set_option('display.max_columns', 18)
pd.options.mode.chained_assignment = None # default='warn'
pd.options.display.float_format = '{:.2f}'.format
# Logging
logging.basicConfig(level=logging.INFO)
# Load stock data; add RSI and EMA
for tick in ticker_list:
stock = ats.load_and_prep_stock_data(tick, start_date, end_date, '1d')
stock = ats.generate_EMA_signal(stock, back_candles)
stock_data_list.append(stock)
# Add ticker
for idx, df in enumerate(stock_data_list):
ticker = ticker_list[idx]
df['Ticker'] = ticker
# Create portfolio
portfolio = pd.DataFrame(ticker_list, columns=['Ticker'])
portfolio['signal'] = 0
portfolio['Close'] = 0
portfolio['Abs_buy_limit'] = 0
portfolio['num_of_stocks'] = 0
portfolio['Value'] = 0
def fib_portfolio_invest(df, investment_rate, pf):
week_of_previous_day = None
df['Date'] = pd.to_datetime(df['Date'])
cash = 0
act_ticker = df.at[0, 'Ticker']
cash += investment_rate
pf.loc[pf['Ticker'] == act_ticker, 'signal'] = df.at[0, 'signal']
pf.loc[pf['Ticker'] == act_ticker, 'Close'] = df.at[0, 'Close']
for df_idx, df_row in df.iloc[1:].iterrows():
current_week = df_row['Date'].isocalendar()[1]
act_ticker = df_row['Ticker']
if df_row['Date'] != df.loc[df_idx - 1, 'Date']:
if current_week != week_of_previous_day:
cash += investment_rate
for pf_idx, pf_row in pf.iterrows():
if pf.at[pf_idx, 'signal'] == 1: # Sell-Signal
cash += pf.at[pf_idx, 'num_of_stocks'] * pf.at[pf_idx, 'Close']
pf.at[pf_idx, 'num_of_stocks'] = 0
pf.at[pf_idx, 'Value'] = 0
portfolio_sum = pf['Value'].sum() + cash
cap = 0.1 * portfolio_sum
for pf_idx, pf_row in pf.iterrows():
if pf.at[pf_idx, 'signal'] == 2 and pf.at[pf_idx, 'Value'] < cap: # Buy-Signal
cap_buy_limit = math.floor((cap - pf.at[pf_idx, 'Value']) / pf.at[pf_idx, 'Close'])
affordable_stocks = math.floor(cash / pf.at[pf_idx, 'Close'])
pf.at[pf_idx, 'Abs_buy_limit'] = min(cap_buy_limit, affordable_stocks)
while (pf['Abs_buy_limit'] != 0).any():
min_index = pf[pf['signal'] == 2]['Value'].idxmin()
pf.at[min_index, 'num_of_stocks'] += pf.at[min_index, 'Abs_buy_limit']
cash -= pf.at[min_index, 'Abs_buy_limit'] * pf.at[min_index, 'Close']
pf.at[min_index, 'Value'] = pf.at[min_index, 'num_of_stocks'] * pf.at[min_index, 'Close']
pf.at[min_index, 'Abs_buy_limit'] = 0
for pf_idx, pf_row in pf.iterrows():
if pf.at[pf_idx, 'signal'] == 2 and pf.at[pf_idx, 'Value'] < cap: # Buy-Signal
cap_buy_limit = math.floor((cap - pf.at[pf_idx, 'Value']) / pf.at[pf_idx, 'Close'])
affordable_stocks = math.floor(cash / pf.at[pf_idx, 'Close'])
pf.at[pf_idx, 'Abs_buy_limit'] = min(cap_buy_limit, affordable_stocks)
pf['signal'] = 0
pf.loc[pf['Ticker'] == act_ticker, 'signal'] = df.at[df_idx, 'signal']
pf.loc[pf['Ticker'] == act_ticker, 'Close'] = df.at[df_idx, 'Close']
else:
pf.loc[pf['Ticker'] == act_ticker, 'signal'] = df.at[df_idx, 'signal']
pf.loc[pf['Ticker'] == act_ticker, 'Close'] = df.at[df_idx, 'Close']
week_of_previous_day = current_week
pf[['Value', 'Close']] = pf[['Value', 'Close']].apply(lambda x: x.round(2))
pf_result = pf
pf_result.loc[0] = {'Ticker': 'cash', 'signal': 0, 'Close': 0, 'Abs_buy_limit': 0, 'num_of_stocks': 0, 'Value': cash}
return pf_result
def execute_portfolio_invest(input_list_stock_data, investment_rate, pf, gap_candles, Fib_back_candles):
try:
for input_stock in input_list_stock_data:
ats.generate_fibonacci_table(input_stock, Fib_back_candles, gap_candles)
stoxx50_data = pd.concat(input_list_stock_data)
stoxx50_data = stoxx50_data.sort_values(by='Date')
stoxx50_data = stoxx50_data.reset_index(drop=True)
pf_output = fib_portfolio_invest(stoxx50_data, investment_rate, pf)
result_fib_sum = round(pf_output['Value'].sum(), 2)
# clean portfolio
pf['signal'] = 0
pf['Close'] = 0
pf['Abs_buy_limit'] = 0
pf['num_of_stocks'] = 0
pf['Value'] = 0
finally:
del stoxx50_data
del pf_output
gc.collect()
return result_fib_sum
# Function to monitor memory usage
def log_memory_usage():
process = psutil.Process(os.getpid())
mem_info = process.memory_info()
logging.info(f"Memory Usage: {mem_info.rss / (1024 * 1024)} MB")
# Heatmap results collection
heatmap_results = []
# Objective function for Optuna
def objective(trial):
gap_candles = trial.suggest_int('gap_candles', 2, 14)
Fib_back_candles = trial.suggest_int('Fib_back_candles', 10, 51)
logging.info(f"Testing with gap_candles: {gap_candles}, Fib_back_candles: {Fib_back_candles}")
log_memory_usage()
score = execute_portfolio_invest(stock_data_list, 5000, portfolio, gap_candles, Fib_back_candles)
heatmap_results.append((gap_candles, Fib_back_candles, score))
return score
def run_optimization():
# Create Optuna study
study = optuna.create_study(direction='maximize')
# Enqueue trials
gap_candles_range = range(2, 14)
Fib_back_candles_range = range(10, 51)
param_combinations = list(product(gap_candles_range, Fib_back_candles_range))
for gap_candles, Fib_back_candles in param_combinations:
study.enqueue_trial({'gap_candles': gap_candles, 'Fib_back_candles': Fib_back_candles})
# Start optimization
study.optimize(objective, n_trials=len(param_combinations))
return study
if __name__ == "__main__":
with ProcessPoolExecutor(max_workers=1) as executor:
future = executor.submit(run_optimization)
study = future.result()
best_params = study.best_params
best_score = study.best_value
print(f"Start: {start_date} - End: {end_date}")
print("Beste Parameterkombination durch Optuna:", best_params)
print("Bester Score:", best_score)
# Create DataFrame for the heatmap
heatmap_df = pd.DataFrame(heatmap_results, columns=['gap_candles', 'Fib_back_candles', 'score'])
# Compute the average score for each combination to avoid duplicates
heatmap_df = heatmap_df.groupby(['gap_candles', 'Fib_back_candles'], as_index=False).mean()
# Scale down the score values and round to integers
heatmap_df['score'] = (heatmap_df['score'] / 1000).round()
# Create a pivot table
pivot_table = heatmap_df.pivot('Fib_back_candles', 'gap_candles', 'score')
# Plot the heatmap
plt.figure(figsize=(10, 6))
sns.heatmap(pivot_table, annot=True, fmt=".0f", cmap="YlGnBu", cbar_kws={'label': 'Score'})
plt.title('Performance Heatmap 01-01-2019 - 31-12-2023')
plt.xlabel('Gap Candles')
plt.ylabel('Fib Back Candles')
plt.show()
print(f"Start: {start_date} - End: {end_date}")
I’ve thougt it might be a problem with the memory usage, but it isn’t.
Is there a problem with my cpu?
Maybe I’ve created an endless loop? I don’t get it.
New contributor
Markus Weber is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.