I am a new user. I have some problems when I set num_workers on windowns. I received the following notification
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.This probably means that you are not using fork to start your
child processes and you have forgotten to use the proper idiom
in the main module:if name == ‘main‘:
freeze_support()
…The “freeze_support()” line can be omitted if the program
is not going to be frozen to produce an executable.
Then, I modify the code:
import numpy as np
import pandas as pd
import torch
from gluonts.dataset.multivariate_grouper import MultivariateGrouper
from gluonts.dataset.repository.datasets import dataset_recipes, get_dataset
from pts.model.tempflow import TempFlowEstimator
from pts.model.transformer_tempflow import TransformerTempFlowEstimator
from pts.model.time_grad import TimeGradEstimator
from pts import Trainer
from gluonts.evaluation.backtest import make_evaluation_predictions
from gluonts.evaluation import MultivariateEvaluator
from gluonts.dataset.common import ListDataset
from gluonts.dataset.rolling_dataset import (
StepStrategy,
generate_rolling_dataset,
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
from deepnegpol import DeepNEGPOLEstimator
from pts.model.deepvar import DeepVAREstimator
from pts.modules import LowRankMultivariateNormalOutput
from pts.modules import NormalOutput
from gluonts.model.gpvar import GPVAREstimator
from gluonts.mx.distribution.lowrank_gp import LowrankGPOutput
from hyperparams import Hyperparams
from train_and_plot_predictions import data_creation, metrics_rolling_dataset1,metrics_rolling_dataset2, plot
params = Hyperparams()
import warnings
warnings.filterwarnings("ignore")
####################################################################################
# BIKE
####################################################################################
train_ds, test_ds, target_dim, freq, prediction_length = data_creation(params, data = "bike")
##############################################################################################
# TRAINING
##############################################################################################
def estimator_model(test):
modele = test['model']
num_cells = test['num_cells']
num_cells1 = test['num_cells1']
num_cells2 = test['num_cells2']
lr = test['lr']
if modele == "timegrad":
from pts import Trainer
estimator = TimeGradEstimator(
input_size = 564,
num_cells = num_cells,
num_layers=params.num_layers,
dropout_rate=params.dropout_rate,
target_dim=target_dim,
prediction_length=prediction_length,
context_length = prediction_length,
cell_type='LSTM',
freq=freq,
loss_type='l2',
diff_steps=100,
beta_end=0.1,
beta_schedule="linear",
scaling=False,
lags_seq = params.lags_seq2,
trainer=Trainer(
epochs=params.epochs,
batch_size=params.batch_size,
learning_rate=lr,
num_batches_per_epoch=params.num_batches_per_epoch ),
conditioning_length = params.conditioning_length,
use_marginal_transformation = True
)
if modele == "deepnegpol":
from pts import Trainer
estimator = DeepNEGPOLEstimator(
input_size1 = 10,
input_size2 = 484,
num_cells1 = num_cells1,
num_cells2 = num_cells2,
num_layers1=params.num_layers,
num_layers2=params.num_layers,
dropout_rate=params.dropout_rate,
target_dim=target_dim,
prediction_length=prediction_length,
freq=freq,
scaling=True,
lags_seq = params.lags_seq2,
trainer=Trainer(
epochs=params.epochs,
batch_size=params.batch_size,
learning_rate=lr,
num_batches_per_epoch=params.num_batches_per_epoch )
)
if modele == "lstmcop":
from pts import Trainer
estimator = DeepVAREstimator(
target_dim=target_dim,
prediction_length=prediction_length,
num_cells = num_cells,
cell_type='LSTM',
input_size=567,
freq=freq,
scaling=False,
dropout_rate=params.dropout_rate,
distr_output = LowRankMultivariateNormalOutput(target_dim,params.rank),
rank = params.rank,
lags_seq = params.lags_seq2,
trainer=Trainer(
epochs=params.epochs,
batch_size=params.batch_size,
learning_rate=lr,
num_batches_per_epoch=params.num_batches_per_epoch ),
conditioning_length = params.conditioning_length,
use_marginal_transformation = True
)
if modele == "lstmindscaling":
from pts import Trainer
estimator = DeepVAREstimator(
target_dim=target_dim,
prediction_length=prediction_length,
cell_type='LSTM',
num_cells = num_cells,
input_size=567,
freq=freq,
scaling=True,
dropout_rate=params.dropout_rate,
distr_output = LowRankMultivariateNormalOutput(target_dim,params.rank),
rank = params.rank,
lags_seq = params.lags_seq2,
trainer=Trainer(
epochs=params.epochs,
batch_size=params.batch_size,
learning_rate=lr,
num_batches_per_epoch=params.num_batches_per_epoch ),
conditioning_length = params.conditioning_length,
use_marginal_transformation = False
)
if modele == "gpscaling":
from gluonts.mx.trainer import Trainer
estimator = GPVAREstimator(
target_dim=target_dim,
num_cells = num_cells,
dropout_rate=params.dropout_rate,
prediction_length=prediction_length,
cell_type="lstm",
target_dim_sample=params.target_dim_sample,
lags_seq = params.lags_seq2,
conditioning_length = params.conditioning_length,
scaling=False,
freq=freq,
rank = params.rank,
use_marginal_transformation=True,
distr_output=LowrankGPOutput(rank = params.rank, dim = target_dim),
trainer=Trainer(
epochs=params.epochs,
batch_size=params.batch_size,
learning_rate=lr,
num_batches_per_epoch=params.num_batches_per_epoch )
)
if modele == "gpcop":
from gluonts.mx.trainer import Trainer
estimator = GPVAREstimator(
target_dim=target_dim,
dropout_rate=params.dropout_rate,
prediction_length=prediction_length,
cell_type="lstm",
num_cells = num_cells,
target_dim_sample=params.target_dim_sample,
lags_seq = params.lags_seq2,
conditioning_length = params.conditioning_length,
scaling=False,
freq=freq,
rank = params.rank,
use_marginal_transformation=True,
distr_output=LowrankGPOutput(rank = params.rank, dim = target_dim),
trainer=Trainer(
epochs=params.epochs,
batch_size=params.batch_size,
learning_rate=lr,
num_batches_per_epoch=params.num_batches_per_epoch ),
)
if modele == "lstmmaf":
from pts import Trainer
estimator = TempFlowEstimator(
target_dim=target_dim,
prediction_length=prediction_length,
cell_type = 'LSTM',
input_size = 564,
lags_seq = params.lags_seq2,
num_cells = num_cells,
freq=freq,
n_blocks = 2,
scaling = False,
dequantize = False,
flow_type = 'MAF',
trainer=Trainer(
epochs=params.epochs,
batch_size=params.batch_size,
learning_rate=lr,
num_batches_per_epoch=params.num_batches_per_epoch),
)
return estimator
#test0 = {'model':'lstmmaf', 'num_cells':40 , 'lr':1e-3, 'num_cells1':20, 'num_cells2':40}
test1 = {'model':'deepnegpol', 'num_cells':80 , 'lr':1e-3, 'num_cells1':20, 'num_cells2':40}
#test2 = {'model':'lstmcop', 'num_cells':40 , 'lr':1e-3, 'num_cells1':20, 'num_cells2':40}
#test3 = {'model':'lstmindscaling', 'num_cells':40 , 'lr':1e-3, 'num_cells1':20, 'num_cells2':40}
#test4 = {'model':'gpcop', 'num_cells':40 , 'lr':1e-3, 'num_cells1':20, 'num_cells2':40}
#test5 = {'model':'gpscaling', 'num_cells':40 , 'lr':1e-3, 'num_cells1':20, 'num_cells2':40}
#test6 = {'model':'timegrad', 'num_cells':40 , 'lr':1e-3, 'num_cells1':20, 'num_cells2':40}
def main():
list_tests_str = ['test' + str(i) for i in range(0, 25)]
list_tests = []
data = "bike"
for test in list_tests_str:
if test in locals():
list_tests.append(eval(test))
for test in list_tests:
for rep in range(0, 3):
print(f"Essai numéro {rep} du modele {test['model']} avec {test['num_cells']} cellules")
estimator = estimator_model(test)
try:
predictor = estimator.train(train_ds, num_workers=2)
targets, forecasts = metrics_rolling_dataset2(test_ds, predictor, params, test, rep, data)
except Exception as e:
print("An exception occurred: ", e)
# traceback.print_exc()
if __name__ == '__main__':
main()
But I still can’t run the code and received the following notification
PS D:InternPaulProbabilistic_forecasting-mainProbabilistic_forecasting-main> & C:/Users/ASUS/anaconda3/envs/test6/python.exe d:/Intern/Paul/Probabilistic_forecasting-main/Probabilistic_forecasting-main/example_bike.py
Experiment with bike data
Could you please help me with that problem? Thank you very much
p.s: I am using windows 11, I created an environment with annaconda.
I tried to modify the code based on what ChatGPT suggested but it doesn’t work.
Pipnap is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.