My terminal returns the following when i attempt to train my model:
Ultralytics YOLOv8.2.5 ???? Python-3.11.7 torch-2.3.0 CUDA:0 (NVIDIA GeForce RTX 3050 Laptop GPU, 4096MiB)
enginetrainer: task=detect, mode=train, model=yolov8n.yaml, data=config.yaml, epochs=10, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train2, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runsdetecttrain2
Overriding model.yaml nc=80 with nc=1
from n params module arguments
0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True]
3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2]
4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True]
5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2]
6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True]
7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True]
9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1]
12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1]
13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1]
15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1]
16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1]
19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1]
21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1]
22 [15, 18, 21] 1 751507 ultralytics.nn.modules.head.Detect [1, [64, 128, 256]]
YOLOv8n summary: 225 layers, 3011043 parameters, 3011027 gradients, 8.2 GFLOPs
TensorBoard: Start with 'tensorboard --logdir runsdetecttrain2', view at http://localhost:6006/
Freezing layer 'model.22.dfl.conv.weight'
AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n...
AMP: checks passed ✅
train: Scanning C:UsersSawyerDesktopCodedatasetlabels.cache... 1968 images, 0 backgrounds, 0 corrupt: 100%|██████████| 1968/1968 [00:00<?, ?it/s]
Ultralytics YOLOv8.2.5 ???? Python-3.11.7 torch-2.3.0 CUDA:0 (NVIDIA GeForce RTX 3050 Laptop GPU, 4096MiB)
enginetrainer: task=detect, mode=train, model=yolov8n.yaml, data=config.yaml, epochs=10, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train3, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runsdetecttrain3
Overriding model.yaml nc=80 with nc=1
from n params module arguments
0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True]
3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2]
4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True]
5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2]
6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True]
7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True]
9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1]
12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1]
13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1]
15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1]
16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1]
19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1]
21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1]
22 [15, 18, 21] 1 751507 ultralytics.nn.modules.head.Detect [1, [64, 128, 256]]
YOLOv8n summary: 225 layers, 3011043 parameters, 3011027 gradients, 8.2 GFLOPs
TensorBoard: Start with 'tensorboard --logdir runsdetecttrain3', view at http://localhost:6006/
Freezing layer 'model.22.dfl.conv.weight'
AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n...
AMP: checks passed ✅
train: Scanning C:UsersSawyerDesktopCodedatasetlabels.cache... 1968 images, 0 backgrounds, 0 corrupt: 100%|██████████| 1968/1968 [00:00<?, ?it/s]
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "C:UsersSawyeranaconda3Libmultiprocessingspawn.py", line 122, in spawn_main
exitcode = _main(fd, parent_sentinel)
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:UsersSawyeranaconda3Libmultiprocessingspawn.py", line 131, in _main
prepare(preparation_data)
File "C:UsersSawyeranaconda3Libmultiprocessingspawn.py", line 246, in prepare
_fixup_main_from_path(data['init_main_from_path'])
File "C:UsersSawyeranaconda3Libmultiprocessingspawn.py", line 297, in _fixup_main_from_path
main_content = runpy.run_path(main_path,
^^^^^^^^^^^^^^^^^^^^^^^^^
File "<frozen runpy>", line 291, in run_path
File "<frozen runpy>", line 98, in _run_module_code
File "<frozen runpy>", line 88, in _run_code
File "c:UsersSawyerDesktopCodemain.py", line 8, in <module>
model.train(data="config.yaml", epochs=10) # train the model
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:UsersSawyeranaconda3Libsite-packagesultralyticsenginemodel.py", line 673, in train
self.trainer.train()
File "C:UsersSawyeranaconda3Libsite-packagesultralyticsenginetrainer.py", line 199, in train
self._do_train(world_size)
File "C:UsersSawyeranaconda3Libsite-packagesultralyticsenginetrainer.py", line 313, in _do_train
self._setup_train(world_size)
File "C:UsersSawyeranaconda3Libsite-packagesultralyticsenginetrainer.py", line 277, in _setup_train
self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode="train")
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:UsersSawyeranaconda3Libsite-packagesultralyticsmodelsyolodetecttrain.py", line 55, in get_dataloader
return build_dataloader(dataset, batch_size, workers, shuffle, rank) # return dataloader
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:UsersSawyeranaconda3Libsite-packagesultralyticsdatabuild.py", line 137, in build_dataloader
return InfiniteDataLoader(
^^^^^^^^^^^^^^^^^^^
File "C:UsersSawyeranaconda3Libsite-packagesultralyticsdatabuild.py", line 41, in __init__
self.iterator = super().__iter__()
^^^^^^^^^^^^^^^^^^
File "C:UsersSawyeranaconda3Libsite-packagestorchutilsdatadataloader.py", line 439, in __iter__
return self._get_iterator()
^^^^^^^^^^^^^^^^^^^^
File "C:UsersSawyeranaconda3Libsite-packagestorchutilsdatadataloader.py", line 387, in _get_iterator
return _MultiProcessingDataLoaderIter(self)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:UsersSawyeranaconda3Libsite-packagestorchutilsdatadataloader.py", line 1040, in __init__
w.start()
File "C:UsersSawyeranaconda3Libmultiprocessingprocess.py", line 121, in start
self._popen = self._Popen(self)
^^^^^^^^^^^^^^^^^
File "C:UsersSawyeranaconda3Libmultiprocessingcontext.py", line 224, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:UsersSawyeranaconda3Libmultiprocessingcontext.py", line 336, in _Popen
return Popen(process_obj)
^^^^^^^^^^^^^^^^^^
File "C:UsersSawyeranaconda3Libmultiprocessingpopen_spawn_win32.py", line 46, in __init__
prep_data = spawn.get_preparation_data(process_obj._name)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:UsersSawyeranaconda3Libmultiprocessingspawn.py", line 164, in get_preparation_data
_check_not_importing_main()
File "C:UsersSawyeranaconda3Libmultiprocessingspawn.py", line 140, in _check_not_importing_main
raise RuntimeError('''
RuntimeError:
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.
This probably means that you are not using fork to start your
child processes and you have forgotten to use the proper idiom
in the main module:
if __name__ == '__main__':
freeze_support()
...
The "freeze_support()" line can be omitted if the program
is not going to be frozen to produce an executable.
To fix this issue, refer to the "Safe importing of main module"
section in https://docs.python.org/3/library/multiprocessing.html
Im not sure what the problem is and cannot seem to figure it out. I dont exactly understand what the RuntimeError is telling me ethier, please help. 🙁
I tried looking at spawn.py with no results, other than that I have no idea where to start when solving this problem.
New contributor
Tigarist is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.