<code>from math import dist
ITP = 100
bigarray = pd.DataFrame(columns=range(1, ITP+1))
array = pd.DataFrame(columns=range(1, ITP+1)) #make array
for i in range(len(data_final)-ITP):
current_point = data_final[i]
min_distance = float('inf')
nearest_point = None #initiate
for j in range(len(data_final)-ITP): #find closest spot
distance = dist(current_point, data_final[j]) # Euclid distance
if i != j and distance < min_distance: #
min_distance = distance # update min_distance
nearest_point = j # update nearest_point
for k in range(ITP): # make array
array.loc[0, k+1] = dist(data_final[i+k], data_final[nearest_point+k])
bigarray = pd.concat([bigarray, array], ignore_index=True)
array = pd.DataFrame(columns=range(1, ITP+1))
</code>
from math import dist
ITP = 100
bigarray = pd.DataFrame(columns=range(1, ITP+1))
array = pd.DataFrame(columns=range(1, ITP+1)) #make array
for i in range(len(data_final)-ITP):
current_point = data_final[i]
min_distance = float('inf')
nearest_point = None #initiate
for j in range(len(data_final)-ITP): #find closest spot
distance = dist(current_point, data_final[j]) # Euclid distance
if i != j and distance < min_distance: #
min_distance = distance # update min_distance
nearest_point = j # update nearest_point
for k in range(ITP): # make array
array.loc[0, k+1] = dist(data_final[i+k], data_final[nearest_point+k])
bigarray = pd.concat([bigarray, array], ignore_index=True)
array = pd.DataFrame(columns=range(1, ITP+1))
(2) After that, I got every average about the 100(ITP) columns and get a log values.
Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>import math
mean_final = [0for i inrange(ITP)]
for i inrange(1, ITP+1):
mean_final[i-1] = (bigarray[i].mean())
for i inrange(0, ITP):
mean_final[i] = math.log(mean_final[i])
mean_final
</code>
<code>import math
mean_final = [0 for i in range(ITP)]
for i in range(1, ITP+1):
mean_final[i-1] = (bigarray[i].mean())
for i in range(0, ITP) :
mean_final[i] = math.log(mean_final[i])
mean_final
</code>
import math
mean_final = [0 for i in range(ITP)]
for i in range(1, ITP+1):
mean_final[i-1] = (bigarray[i].mean())
for i in range(0, ITP) :
mean_final[i] = math.log(mean_final[i])
mean_final