Identical SE values for different groups using emtrends

I’m using emtrends to extract slopes and do pairwise comparisons between the groups of my independent variable, controlled for the other variables in the model. However, when plotting the slopes, I noticed all SE values produced by emtrends were identical. I can’t work out why though?

Here’s a worked example:

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>demo_data <- structure(list(responsevar = c(-0.0618190679498364, 0.15899745702364,
0.929534141895136, 1.1177284975211, -0.00786079907502823, 0.094923852612621,
0.607581364096467, 0.440737663183793, 0.082136198176222, 0.157661900467845,
0.830998187171696, 1.48543531298402, 1.7023101500879, 2.05170334713859,
0.0100560258999499, 1.17122182596676, 0.966616026418047, 1.28196801361743,
1.83426518745315, -0.0618190679498364, 0.483300296887319, 0.891072080154904,
0.242089446870316, -0.00786079907502823, 0.100605419887576, 0.506128950660782,
0.209931589686233, 0.115366122953099, 0.157661900467845, 0.531293815992106,
1.25374892200693, 1.50296621263127, 1.44204603838667, 0.0100560258999499,
-0.100982522461554, 0.701793094621886, 0.957971325343055, 2.20514483544439,
-0.0618190679498364, 0.356048307744416, 0.651509920934051, 0.108383785292986,
-0.00786079907502823, 0.207654065049067, 0.295812434350708, 0.0367762200675729,
-0.119369737876224, 0.157661900467845, 0.855810615090611, 0.794374313954266,
0.714569129850953, 0.77324072979401, 0.0100560258999499, 0.141294856642278,
0.429316434045948, 0.26206854485803, 0.418774008647674, -0.0618190679498364,
-0.246924373738116, 0.319374236827093, -0.49671671929437, -0.00786079907502823,
0.228222865853934, 0.0936004246573529, -0.385729213582175, -0.338446278126348,
0.157661900467845, 0.437319684073364, 0.43789561209487, 0.269572832872745,
0.143710919264518, 0.0100560258999499, 0.584417295260851, -1.00583616078814,
0.0349028968964146, -0.138691000504007, -0.0618190679498364,
0.475098387917471, 0.151489745992231, 0.606705131746448, -0.00786079907502823,
0.25051692004141, 0.33430090269068, 0.182426365767506, 0.30696939648497,
0.157661900467845, 0.794025180049588, 0.967192000312653, 1.52027190896946,
1.89339167130825, 0.0100560258999499, -0.130451253242324, 1.12487260844998,
2.53082516067062, 2.23414816378354), indepvar1 = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), levels = c("unedited_vehicle",
"unedited_MSH3aso_0.022uM", "unedited_MSH3aso_0.26uM", "unedited_MSH3aso_3uM",
"unedited_SCRaso_3uM"), class = "factor"), indepvar2 = structure(c(1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L,
4L, 4L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L,
4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L), levels = c("MSH3aso_dose_titration-N1--unedited",
"MSH3aso_dose_titration-N2--unedited", "MSH3aso_dose_titration-N3--unedited",
"MSH3aso_dose_titration-N4--unedited", "FAN1ko_MSH3aso-N1-2H3-FAN1ko",
"FAN1ko_MSH3aso-N2-2H3-FAN1ko", "FAN1ko_MSH3aso-N4-2H3-FAN1ko",
"FAN1ko_MSH3aso-N3-2H3-FAN1ko", "CRISPRwt_MSH3aso-N1--CRISPRwt",
"CRISPRwt_MSH3aso-N2--CRISPRwt", "CRISPRwt_MSH3aso-N3--CRISPRwt",
"MSH3ko_CRISPRwt-NI1908-Cl37-MSH3ko", "MSH3ko_CRISPRwt-NI1908-Cl27-MSH3ko",
"MSH3ko_CRISPRwt-NI1708-Cl37 -MSH3ko", "MSH3ko_CRISPRwt-NI0408-WT_JH-unedited",
"MSH3ko_CRISPRwt-NI1708-Cl26-MSH3ko", "MSH3ko_CRISPRwt-NI1808-Cl26-MSH3ko"
), class = "factor"), time = c(0, 3, 6, 9, 0, 3, 6, 12, 15, 0,
3, 9, 12, 15, 0, 3, 9, 12, 15, 0, 3, 6, 9, 0, 3, 6, 12, 15, 0,
3, 9, 12, 15, 0, 3, 9, 12, 15, 0, 3, 6, 9, 0, 3, 6, 12, 15, 0,
3, 9, 12, 15, 0, 3, 9, 12, 15, 0, 3, 6, 9, 0, 3, 6, 12, 15, 0,
3, 9, 12, 15, 0, 3, 9, 12, 15, 0, 3, 6, 9, 0, 3, 6, 12, 15, 0,
3, 9, 12, 15, 0, 3, 9, 12, 15)), row.names = c(NA, -95L), class = c("tbl_df",
"tbl", "data.frame"))
my_lm <- lm(responsevar ~ indepvar1 * time + indepvar2, data = demo_data)
emtrends(my_lm, ~ indepvar1, var = "time")
> emtrends(my_lm, ~ indepvar1, var = "time")
indepvar1 time.trend SE df lower.CL upper.CL
unedited_vehicle 0.0801 0.0168 82 0.0467 0.1134
unedited_MSH3aso_0.022uM 0.0741 0.0168 82 0.0407 0.1074
unedited_MSH3aso_0.26uM 0.0120 0.0168 82 -0.0213 0.0454
unedited_MSH3aso_3uM -0.0232 0.0168 82 -0.0565 0.0101
unedited_SCRaso_3uM 0.0994 0.0168 82 0.0661 0.1327
Results are averaged over the levels of: indepvar2
Confidence level used: 0.95
</code>
<code>demo_data <- structure(list(responsevar = c(-0.0618190679498364, 0.15899745702364, 0.929534141895136, 1.1177284975211, -0.00786079907502823, 0.094923852612621, 0.607581364096467, 0.440737663183793, 0.082136198176222, 0.157661900467845, 0.830998187171696, 1.48543531298402, 1.7023101500879, 2.05170334713859, 0.0100560258999499, 1.17122182596676, 0.966616026418047, 1.28196801361743, 1.83426518745315, -0.0618190679498364, 0.483300296887319, 0.891072080154904, 0.242089446870316, -0.00786079907502823, 0.100605419887576, 0.506128950660782, 0.209931589686233, 0.115366122953099, 0.157661900467845, 0.531293815992106, 1.25374892200693, 1.50296621263127, 1.44204603838667, 0.0100560258999499, -0.100982522461554, 0.701793094621886, 0.957971325343055, 2.20514483544439, -0.0618190679498364, 0.356048307744416, 0.651509920934051, 0.108383785292986, -0.00786079907502823, 0.207654065049067, 0.295812434350708, 0.0367762200675729, -0.119369737876224, 0.157661900467845, 0.855810615090611, 0.794374313954266, 0.714569129850953, 0.77324072979401, 0.0100560258999499, 0.141294856642278, 0.429316434045948, 0.26206854485803, 0.418774008647674, -0.0618190679498364, -0.246924373738116, 0.319374236827093, -0.49671671929437, -0.00786079907502823, 0.228222865853934, 0.0936004246573529, -0.385729213582175, -0.338446278126348, 0.157661900467845, 0.437319684073364, 0.43789561209487, 0.269572832872745, 0.143710919264518, 0.0100560258999499, 0.584417295260851, -1.00583616078814, 0.0349028968964146, -0.138691000504007, -0.0618190679498364, 0.475098387917471, 0.151489745992231, 0.606705131746448, -0.00786079907502823, 0.25051692004141, 0.33430090269068, 0.182426365767506, 0.30696939648497, 0.157661900467845, 0.794025180049588, 0.967192000312653, 1.52027190896946, 1.89339167130825, 0.0100560258999499, -0.130451253242324, 1.12487260844998, 2.53082516067062, 2.23414816378354), indepvar1 = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), levels = c("unedited_vehicle", "unedited_MSH3aso_0.022uM", "unedited_MSH3aso_0.26uM", "unedited_MSH3aso_3uM", "unedited_SCRaso_3uM"), class = "factor"), indepvar2 = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L), levels = c("MSH3aso_dose_titration-N1--unedited", "MSH3aso_dose_titration-N2--unedited", "MSH3aso_dose_titration-N3--unedited", "MSH3aso_dose_titration-N4--unedited", "FAN1ko_MSH3aso-N1-2H3-FAN1ko", "FAN1ko_MSH3aso-N2-2H3-FAN1ko", "FAN1ko_MSH3aso-N4-2H3-FAN1ko", "FAN1ko_MSH3aso-N3-2H3-FAN1ko", "CRISPRwt_MSH3aso-N1--CRISPRwt", "CRISPRwt_MSH3aso-N2--CRISPRwt", "CRISPRwt_MSH3aso-N3--CRISPRwt", "MSH3ko_CRISPRwt-NI1908-Cl37-MSH3ko", "MSH3ko_CRISPRwt-NI1908-Cl27-MSH3ko", "MSH3ko_CRISPRwt-NI1708-Cl37 -MSH3ko", "MSH3ko_CRISPRwt-NI0408-WT_JH-unedited", "MSH3ko_CRISPRwt-NI1708-Cl26-MSH3ko", "MSH3ko_CRISPRwt-NI1808-Cl26-MSH3ko" ), class = "factor"), time = c(0, 3, 6, 9, 0, 3, 6, 12, 15, 0, 3, 9, 12, 15, 0, 3, 9, 12, 15, 0, 3, 6, 9, 0, 3, 6, 12, 15, 0, 3, 9, 12, 15, 0, 3, 9, 12, 15, 0, 3, 6, 9, 0, 3, 6, 12, 15, 0, 3, 9, 12, 15, 0, 3, 9, 12, 15, 0, 3, 6, 9, 0, 3, 6, 12, 15, 0, 3, 9, 12, 15, 0, 3, 9, 12, 15, 0, 3, 6, 9, 0, 3, 6, 12, 15, 0, 3, 9, 12, 15, 0, 3, 9, 12, 15)), row.names = c(NA, -95L), class = c("tbl_df", "tbl", "data.frame")) my_lm <- lm(responsevar ~ indepvar1 * time + indepvar2, data = demo_data) emtrends(my_lm, ~ indepvar1, var = "time") > emtrends(my_lm, ~ indepvar1, var = "time") indepvar1 time.trend SE df lower.CL upper.CL unedited_vehicle 0.0801 0.0168 82 0.0467 0.1134 unedited_MSH3aso_0.022uM 0.0741 0.0168 82 0.0407 0.1074 unedited_MSH3aso_0.26uM 0.0120 0.0168 82 -0.0213 0.0454 unedited_MSH3aso_3uM -0.0232 0.0168 82 -0.0565 0.0101 unedited_SCRaso_3uM 0.0994 0.0168 82 0.0661 0.1327 Results are averaged over the levels of: indepvar2 Confidence level used: 0.95 </code>
demo_data <- structure(list(responsevar = c(-0.0618190679498364, 0.15899745702364, 
0.929534141895136, 1.1177284975211, -0.00786079907502823, 0.094923852612621, 
0.607581364096467, 0.440737663183793, 0.082136198176222, 0.157661900467845, 
0.830998187171696, 1.48543531298402, 1.7023101500879, 2.05170334713859, 
0.0100560258999499, 1.17122182596676, 0.966616026418047, 1.28196801361743, 
1.83426518745315, -0.0618190679498364, 0.483300296887319, 0.891072080154904, 
0.242089446870316, -0.00786079907502823, 0.100605419887576, 0.506128950660782, 
0.209931589686233, 0.115366122953099, 0.157661900467845, 0.531293815992106, 
1.25374892200693, 1.50296621263127, 1.44204603838667, 0.0100560258999499, 
-0.100982522461554, 0.701793094621886, 0.957971325343055, 2.20514483544439, 
-0.0618190679498364, 0.356048307744416, 0.651509920934051, 0.108383785292986, 
-0.00786079907502823, 0.207654065049067, 0.295812434350708, 0.0367762200675729, 
-0.119369737876224, 0.157661900467845, 0.855810615090611, 0.794374313954266, 
0.714569129850953, 0.77324072979401, 0.0100560258999499, 0.141294856642278, 
0.429316434045948, 0.26206854485803, 0.418774008647674, -0.0618190679498364, 
-0.246924373738116, 0.319374236827093, -0.49671671929437, -0.00786079907502823, 
0.228222865853934, 0.0936004246573529, -0.385729213582175, -0.338446278126348, 
0.157661900467845, 0.437319684073364, 0.43789561209487, 0.269572832872745, 
0.143710919264518, 0.0100560258999499, 0.584417295260851, -1.00583616078814, 
0.0349028968964146, -0.138691000504007, -0.0618190679498364, 
0.475098387917471, 0.151489745992231, 0.606705131746448, -0.00786079907502823, 
0.25051692004141, 0.33430090269068, 0.182426365767506, 0.30696939648497, 
0.157661900467845, 0.794025180049588, 0.967192000312653, 1.52027190896946, 
1.89339167130825, 0.0100560258999499, -0.130451253242324, 1.12487260844998, 
2.53082516067062, 2.23414816378354), indepvar1 = structure(c(1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), levels = c("unedited_vehicle", 
"unedited_MSH3aso_0.022uM", "unedited_MSH3aso_0.26uM", "unedited_MSH3aso_3uM", 
"unedited_SCRaso_3uM"), class = "factor"), indepvar2 = structure(c(1L, 
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 
4L, 4L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 
4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 
2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 2L, 
2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L), levels = c("MSH3aso_dose_titration-N1--unedited", 
"MSH3aso_dose_titration-N2--unedited", "MSH3aso_dose_titration-N3--unedited", 
"MSH3aso_dose_titration-N4--unedited", "FAN1ko_MSH3aso-N1-2H3-FAN1ko", 
"FAN1ko_MSH3aso-N2-2H3-FAN1ko", "FAN1ko_MSH3aso-N4-2H3-FAN1ko", 
"FAN1ko_MSH3aso-N3-2H3-FAN1ko", "CRISPRwt_MSH3aso-N1--CRISPRwt", 
"CRISPRwt_MSH3aso-N2--CRISPRwt", "CRISPRwt_MSH3aso-N3--CRISPRwt", 
"MSH3ko_CRISPRwt-NI1908-Cl37-MSH3ko", "MSH3ko_CRISPRwt-NI1908-Cl27-MSH3ko", 
"MSH3ko_CRISPRwt-NI1708-Cl37 -MSH3ko", "MSH3ko_CRISPRwt-NI0408-WT_JH-unedited", 
"MSH3ko_CRISPRwt-NI1708-Cl26-MSH3ko", "MSH3ko_CRISPRwt-NI1808-Cl26-MSH3ko"
), class = "factor"), time = c(0, 3, 6, 9, 0, 3, 6, 12, 15, 0, 
3, 9, 12, 15, 0, 3, 9, 12, 15, 0, 3, 6, 9, 0, 3, 6, 12, 15, 0, 
3, 9, 12, 15, 0, 3, 9, 12, 15, 0, 3, 6, 9, 0, 3, 6, 12, 15, 0, 
3, 9, 12, 15, 0, 3, 9, 12, 15, 0, 3, 6, 9, 0, 3, 6, 12, 15, 0, 
3, 9, 12, 15, 0, 3, 9, 12, 15, 0, 3, 6, 9, 0, 3, 6, 12, 15, 0, 
3, 9, 12, 15, 0, 3, 9, 12, 15)), row.names = c(NA, -95L), class = c("tbl_df", 
"tbl", "data.frame"))


my_lm <- lm(responsevar ~ indepvar1 * time + indepvar2, data = demo_data)
emtrends(my_lm, ~ indepvar1, var = "time")


> emtrends(my_lm, ~ indepvar1, var = "time")
 indepvar1                time.trend     SE df lower.CL upper.CL
 unedited_vehicle             0.0801 0.0168 82   0.0467   0.1134
 unedited_MSH3aso_0.022uM     0.0741 0.0168 82   0.0407   0.1074
 unedited_MSH3aso_0.26uM      0.0120 0.0168 82  -0.0213   0.0454
 unedited_MSH3aso_3uM        -0.0232 0.0168 82  -0.0565   0.0101
 unedited_SCRaso_3uM          0.0994 0.0168 82   0.0661   0.1327

Results are averaged over the levels of: indepvar2 
Confidence level used: 0.95 

As you can see, SE is 0.0168 for all groups in indepvar1.

Google, tried AI, can’t find a solution

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật