I can’t get any PDF uploads to read

I received the error

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>AttributeError: 'bytes' object has no attribute 'seek'
</code>
<code>AttributeError: 'bytes' object has no attribute 'seek' </code>
AttributeError: 'bytes' object has no attribute 'seek'

when trying to upload a test PDF on the streamlit page. My code can be found below. Thank you!

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>import streamlit as st
from pypdf import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import google.generativeai as genai
from langchain_community.vectorstores import FAISS
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from dotenv import load_dotenv
load_dotenv()
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
def get_pdf_text(pdf_docs):
text=""
for pdf in pdf_docs:
pdf_reader=PdfReader(pdf)
for page in pdf_reader.pages:
text+=page.extract_text()
return text
def get_text_chunks(text):
text_splitter=RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
chunks=text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks):
embeddings=GoogleGenerativeAIEmbeddings(model="models/embedding-001")
vector_store=FAISS.from_texts(text_chunks, embedding=embeddings)
vector_store.save_local("faiss_index")
def get_conversational_chain():
prompt_template="""
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
the provided context just say, "answer is not available in the context", don't provide the wrong answer nn
Context:n {context}?n
Question:n{queestion}n
Answer:
"""
model=ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
prompt=PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain=load_qa_chain(model, chain_type="stuff", prompt=prompt)
return chain
def user_input(user_question):
embeddings=GoogleGenerativeAIEmbeddings(model="models/embedding-001")
new_db = FAISS.load_local("faiss_index", embeddings)
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain
response = chain(
{"input_documents":docs, "question": user_question}
, return_only_outputs=True
)
print(response)
st.write("Reply: ", response["output_text"])
def main():
st.set_page_config("Chat With Multiple PDFs")
st.header("Chat with Multiple PDFs using Gemini ????‍♀️")
user_question = st.text_input("Ask a Question from the PDF Files")
if user_question:
user_input(user_question)
with st.sidebar:
st.title("Menu:")
pdf_docs = st.file_uploader("Upload your PDF Files and Click on Submit & Process")
if st.button("Submit & Process"):
with st.spinner("Processing..."):
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
get_vector_store(text_chunks)
st.success("Done")
if __name__ == "__main__":
main()
</code>
<code>import streamlit as st from pypdf import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter import os from langchain_google_genai import GoogleGenerativeAIEmbeddings import google.generativeai as genai from langchain_community.vectorstores import FAISS from langchain_google_genai import ChatGoogleGenerativeAI from langchain.chains.question_answering import load_qa_chain from langchain.prompts import PromptTemplate from dotenv import load_dotenv load_dotenv() genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) def get_pdf_text(pdf_docs): text="" for pdf in pdf_docs: pdf_reader=PdfReader(pdf) for page in pdf_reader.pages: text+=page.extract_text() return text def get_text_chunks(text): text_splitter=RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) chunks=text_splitter.split_text(text) return chunks def get_vector_store(text_chunks): embeddings=GoogleGenerativeAIEmbeddings(model="models/embedding-001") vector_store=FAISS.from_texts(text_chunks, embedding=embeddings) vector_store.save_local("faiss_index") def get_conversational_chain(): prompt_template=""" Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in the provided context just say, "answer is not available in the context", don't provide the wrong answer nn Context:n {context}?n Question:n{queestion}n Answer: """ model=ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) prompt=PromptTemplate(template=prompt_template, input_variables=["context", "question"]) chain=load_qa_chain(model, chain_type="stuff", prompt=prompt) return chain def user_input(user_question): embeddings=GoogleGenerativeAIEmbeddings(model="models/embedding-001") new_db = FAISS.load_local("faiss_index", embeddings) docs = new_db.similarity_search(user_question) chain = get_conversational_chain response = chain( {"input_documents":docs, "question": user_question} , return_only_outputs=True ) print(response) st.write("Reply: ", response["output_text"]) def main(): st.set_page_config("Chat With Multiple PDFs") st.header("Chat with Multiple PDFs using Gemini ????‍♀️") user_question = st.text_input("Ask a Question from the PDF Files") if user_question: user_input(user_question) with st.sidebar: st.title("Menu:") pdf_docs = st.file_uploader("Upload your PDF Files and Click on Submit & Process") if st.button("Submit & Process"): with st.spinner("Processing..."): raw_text = get_pdf_text(pdf_docs) text_chunks = get_text_chunks(raw_text) get_vector_store(text_chunks) st.success("Done") if __name__ == "__main__": main() </code>
import streamlit as st
from pypdf import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os

from langchain_google_genai import GoogleGenerativeAIEmbeddings
import google.generativeai as genai
from langchain_community.vectorstores import FAISS
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from dotenv import load_dotenv

load_dotenv()

genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))

def get_pdf_text(pdf_docs):
    text=""
    for pdf in pdf_docs:
        pdf_reader=PdfReader(pdf)
        for page in pdf_reader.pages:
            text+=page.extract_text()
    return text

def get_text_chunks(text):
    text_splitter=RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
    chunks=text_splitter.split_text(text)
    return chunks

def get_vector_store(text_chunks):
    embeddings=GoogleGenerativeAIEmbeddings(model="models/embedding-001")
    vector_store=FAISS.from_texts(text_chunks, embedding=embeddings)
    vector_store.save_local("faiss_index")

def get_conversational_chain():
    prompt_template="""
    Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
    the provided context just say, "answer is not available in the context", don't provide the wrong answer nn
    Context:n {context}?n
    Question:n{queestion}n

    Answer:
    """

    model=ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)

    prompt=PromptTemplate(template=prompt_template, input_variables=["context", "question"])
    chain=load_qa_chain(model, chain_type="stuff", prompt=prompt)
    return chain

def user_input(user_question):
    embeddings=GoogleGenerativeAIEmbeddings(model="models/embedding-001")

    new_db = FAISS.load_local("faiss_index", embeddings)
    docs = new_db.similarity_search(user_question)

    chain = get_conversational_chain


    response = chain(
        {"input_documents":docs, "question": user_question}
        , return_only_outputs=True
    )

    print(response)
    st.write("Reply: ", response["output_text"])

def main():
    st.set_page_config("Chat With Multiple PDFs")
    st.header("Chat with Multiple PDFs using Gemini ????‍♀️")

    user_question = st.text_input("Ask a Question from the PDF Files")

    if user_question:
        user_input(user_question)

    with st.sidebar:
        st.title("Menu:")
        pdf_docs = st.file_uploader("Upload your PDF Files and Click on Submit & Process")
        if st.button("Submit & Process"):
            with st.spinner("Processing..."):
                raw_text = get_pdf_text(pdf_docs)
                text_chunks = get_text_chunks(raw_text)
                get_vector_store(text_chunks)
                st.success("Done")

if __name__ == "__main__":
    main()
    

I was originally using PyPdf2 but changed to pypdf as I heard it may have caused this issue. I expected and hoped it was simple fix.

New contributor

aria obscura is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

1

The error you’re encountering, AttributeError: ‘bytes’ object has no attribute ‘seek’, typically occurs when you try to operate on a bytes-like object as if it were a file-like object. In the context of your Streamlit application, this error likely arises from how you handle the uploaded files.

  1. Error Handling: Add checks to ensure that text extraction from PDFs is successful. Some PDFs might not contain extractable text, or the extraction might not be perfect depending on the PDF’s encoding.
  2. Performance: Handling large PDFs or multiple uploads can be resource-intensive. Consider implementing asynchronous processing or providing feedback to the user about processing stages.
  3. Debugging: Use st.write() or logging to output intermediate states, which can help in debugging issues related to file processing or data handling.

In Streamlit, when users upload files using st.file_uploader, the files are presented as BytesIO objects, not as direct byte streams. You need to treat these objects accordingly when passing them to libraries or functions expecting file paths or file-like objects.

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>import streamlit as st
from pypdf import PdfReader
from io import BytesIO
def get_pdf_text(pdf_docs):
text = ""
if pdf_docs is not None:
for pdf_file in pdf_docs:
# Create a PdfReader object using BytesIO
pdf_reader = PdfReader(BytesIO(pdf_file.getvalue()))
for page in pdf_reader.pages:
text += page.extract_text() if page.extract_text() else ""
return text
</code>
<code>import streamlit as st from pypdf import PdfReader from io import BytesIO def get_pdf_text(pdf_docs): text = "" if pdf_docs is not None: for pdf_file in pdf_docs: # Create a PdfReader object using BytesIO pdf_reader = PdfReader(BytesIO(pdf_file.getvalue())) for page in pdf_reader.pages: text += page.extract_text() if page.extract_text() else "" return text </code>
import streamlit as st
from pypdf import PdfReader
from io import BytesIO

def get_pdf_text(pdf_docs):
    text = ""
    if pdf_docs is not None:
        for pdf_file in pdf_docs:
            # Create a PdfReader object using BytesIO
            pdf_reader = PdfReader(BytesIO(pdf_file.getvalue()))
            for page in pdf_reader.pages:
                text += page.extract_text() if page.extract_text() else ""
     return text

In Main function,

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>with st.sidebar:
st.title("Upload PDFs")
# Allow multiple files to be uploaded
pdf_docs = st.file_uploader("Upload your PDF Files", accept_multiple_files=True, type=['pdf'])
if st.button("Submit & Process"):
if pdf_docs:
with st.spinner("Processing..."):
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
get_vector_store(text_chunks)
st.success("Done")
# User input for questions
user_question = st.text_input("Ask a Question from the PDF Files")
if user_question:
user_input(user_question)
</code>
<code>with st.sidebar: st.title("Upload PDFs") # Allow multiple files to be uploaded pdf_docs = st.file_uploader("Upload your PDF Files", accept_multiple_files=True, type=['pdf']) if st.button("Submit & Process"): if pdf_docs: with st.spinner("Processing..."): raw_text = get_pdf_text(pdf_docs) text_chunks = get_text_chunks(raw_text) get_vector_store(text_chunks) st.success("Done") # User input for questions user_question = st.text_input("Ask a Question from the PDF Files") if user_question: user_input(user_question) </code>
with st.sidebar:
    st.title("Upload PDFs")
    # Allow multiple files to be uploaded
    pdf_docs = st.file_uploader("Upload your PDF Files", accept_multiple_files=True, type=['pdf'])
    if st.button("Submit & Process"):
        if pdf_docs:
            with st.spinner("Processing..."):
                raw_text = get_pdf_text(pdf_docs)
                text_chunks = get_text_chunks(raw_text)
                get_vector_store(text_chunks)
                st.success("Done")

# User input for questions
user_question = st.text_input("Ask a Question from the PDF Files")
if user_question:
    user_input(user_question)

New contributor

Master is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật