I received the error
AttributeError: 'bytes' object has no attribute 'seek'
when trying to upload a test PDF on the streamlit page. My code can be found below. Thank you!
import streamlit as st
from pypdf import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import google.generativeai as genai
from langchain_community.vectorstores import FAISS
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from dotenv import load_dotenv
load_dotenv()
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
def get_pdf_text(pdf_docs):
text=""
for pdf in pdf_docs:
pdf_reader=PdfReader(pdf)
for page in pdf_reader.pages:
text+=page.extract_text()
return text
def get_text_chunks(text):
text_splitter=RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
chunks=text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks):
embeddings=GoogleGenerativeAIEmbeddings(model="models/embedding-001")
vector_store=FAISS.from_texts(text_chunks, embedding=embeddings)
vector_store.save_local("faiss_index")
def get_conversational_chain():
prompt_template="""
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
the provided context just say, "answer is not available in the context", don't provide the wrong answer nn
Context:n {context}?n
Question:n{queestion}n
Answer:
"""
model=ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
prompt=PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain=load_qa_chain(model, chain_type="stuff", prompt=prompt)
return chain
def user_input(user_question):
embeddings=GoogleGenerativeAIEmbeddings(model="models/embedding-001")
new_db = FAISS.load_local("faiss_index", embeddings)
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain
response = chain(
{"input_documents":docs, "question": user_question}
, return_only_outputs=True
)
print(response)
st.write("Reply: ", response["output_text"])
def main():
st.set_page_config("Chat With Multiple PDFs")
st.header("Chat with Multiple PDFs using Gemini ????♀️")
user_question = st.text_input("Ask a Question from the PDF Files")
if user_question:
user_input(user_question)
with st.sidebar:
st.title("Menu:")
pdf_docs = st.file_uploader("Upload your PDF Files and Click on Submit & Process")
if st.button("Submit & Process"):
with st.spinner("Processing..."):
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
get_vector_store(text_chunks)
st.success("Done")
if __name__ == "__main__":
main()
I was originally using PyPdf2 but changed to pypdf as I heard it may have caused this issue. I expected and hoped it was simple fix.
aria obscura is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
1
The error you’re encountering, AttributeError: ‘bytes’ object has no attribute ‘seek’, typically occurs when you try to operate on a bytes-like object as if it were a file-like object. In the context of your Streamlit application, this error likely arises from how you handle the uploaded files.
- Error Handling: Add checks to ensure that text extraction from PDFs is successful. Some PDFs might not contain extractable text, or the extraction might not be perfect depending on the PDF’s encoding.
- Performance: Handling large PDFs or multiple uploads can be resource-intensive. Consider implementing asynchronous processing or providing feedback to the user about processing stages.
- Debugging: Use st.write() or logging to output intermediate states, which can help in debugging issues related to file processing or data handling.
In Streamlit, when users upload files using st.file_uploader, the files are presented as BytesIO objects, not as direct byte streams. You need to treat these objects accordingly when passing them to libraries or functions expecting file paths or file-like objects.
import streamlit as st
from pypdf import PdfReader
from io import BytesIO
def get_pdf_text(pdf_docs):
text = ""
if pdf_docs is not None:
for pdf_file in pdf_docs:
# Create a PdfReader object using BytesIO
pdf_reader = PdfReader(BytesIO(pdf_file.getvalue()))
for page in pdf_reader.pages:
text += page.extract_text() if page.extract_text() else ""
return text
In Main function,
with st.sidebar:
st.title("Upload PDFs")
# Allow multiple files to be uploaded
pdf_docs = st.file_uploader("Upload your PDF Files", accept_multiple_files=True, type=['pdf'])
if st.button("Submit & Process"):
if pdf_docs:
with st.spinner("Processing..."):
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
get_vector_store(text_chunks)
st.success("Done")
# User input for questions
user_question = st.text_input("Ask a Question from the PDF Files")
if user_question:
user_input(user_question)
Master is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.