Consider the following example
import numpy as np
import pandas as pd
data = {
'Group': ['A', 'B', 'C', 'D']*3, # Repeating groups to fill the DataFrame
'Timestamp': pd.date_range(start='2023-01-01', periods=12, freq='M'), # Monthly frequency
'Numeric': np.random.rand(12) * 100, # Random numeric values scaled up
'String': ['apple', 'banana', 'cherry', 'date']*3 # Repeating string entries
}
df = pd.DataFrame(data)
df.head()
Out[28]:
Group Timestamp Numeric String
0 A 2023-01-31 69.320654 apple
1 B 2023-02-28 1.667633 banana
2 C 2023-03-31 14.211651 cherry
3 D 2023-04-30 40.061005 date
4 A 2023-05-31 23.433903 apple
I know I can use chaining using pipe, which works really well. However, the following line of code, which tries to filter the groupby
dataframe using .loc
fails. What is the issue here? Isn’t pipe just passing a dataframe (so .loc
should work)?
(df.groupby('Group')
.pipe(lambda x: x.loc[x.Numeric <4]))
Traceback (most recent call last):
AttributeError: 'DataFrameGroupBy' object has no attribute 'loc'