This question refers to generic problem but my code set is very much different and most of the solutions give are basically work-around. So, I also need a little help in tagging lables next to beginning and end of ‘geom_smooth’ line.
The labels are diplayed at a distance making it confusing especially when there are minor differences in the colors of lines.
My code is
ggplot(tbl5, aes(x=reorder(TRDAY, -TRORDER), y=AVMKTPC, col=SYMBOL, group = SYMBOL)) +
geom_smooth(se=F, linewidth=1) +
theme(legend.position="none") +
theme(axis.text.x = element_text(angle = 90, vjust = 1, hjust=-1)) +
scale_x_discrete(expand=c(0, 3)) +
scale_y_continuous(breaks = seq(min(tbl5$MN), max(tbl5$MN), by = round((max(tbl5$MN)-min(tbl5$MN))/10, 0))) +
geom_dl(aes(label = SYMBOL), method = list(dl.combine("first.points", "last.points")), cex = 1) +
theme(panel.background = element_rect(fill = "#030905")) +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) +
facet_wrap( ~ GRP, ncol=4, scales = "free_y") +
xlab("Days") + ylab("Price Range") +
theme(plot.title = element_text(hjust = .9, vjust = -240),
panel.grid.major.y = element_line(colour = "skyblue", linetype = "dotted", linewidth = .2)) + #y value is different for zoom (220) and export
geom_vline(xintercept = c(clo[38], clo[12]), color = "red", linetype = "dotted")
My data is
structure(list(SYMBOL = c(“SDL24BEES”, “SDL24BEES”, “SDL24BEES”,
“SDL24BEES”, “SDL24BEES”, “SDL24BEES”, “SDL24BEES”, “SDL24BEES”,
“SDL24BEES”, “SDL24BEES”, “SDL24BEES”, “SDL24BEES”, “SDL24BEES”,
“SDL24BEES”, “SDL24BEES”, “SDL24BEES”, “SDL24BEES”, “SDL24BEES”,
“SDL24BEES”, “SDL24BEES”, “SDL24BEES”, “SDL24BEES”, “SDL24BEES”,
“SDL24BEES”, “SDL24BEES”, “SDL24BEES”, “HDFCSENSEX”, “HDFCSENSEX”,
“HDFCSENSEX”, “HDFCSENSEX”, “HDFCSENSEX”, “HDFCSENSEX”, “HDFCSENSEX”,
“HDFCSENSEX”, “HDFCSENSEX”, “HDFCSENSEX”, “HDFCSENSEX”, “HDFCSENSEX”,
“HDFCSENSEX”, “HDFCSENSEX”, “HDFCSENSEX”, “HDFCSENSEX”, “HDFCSENSEX”,
“HDFCSENSEX”, “HDFCSENSEX”, “HDFCSENSEX”, “HDFCSENSEX”, “HDFCSENSEX”,
“HDFCSENSEX”, “HDFCSENSEX”, “HDFCSENSEX”, “HDFCSENSEX”, “TNIDETF”,
“TNIDETF”, “TNIDETF”, “TNIDETF”, “TNIDETF”, “TNIDETF”, “TNIDETF”,
“TNIDETF”, “TNIDETF”, “TNIDETF”, “TNIDETF”, “TNIDETF”, “TNIDETF”,
“TNIDETF”, “TNIDETF”, “TNIDETF”, “TNIDETF”, “TNIDETF”, “TNIDETF”,
“TNIDETF”, “TNIDETF”, “TNIDETF”, “TNIDETF”, “TNIDETF”, “TNIDETF”,
“TNIDETF”, “AXSENSEX”, “AXSENSEX”, “AXSENSEX”, “AXSENSEX”, “AXSENSEX”,
“AXSENSEX”, “AXSENSEX”, “AXSENSEX”, “AXSENSEX”, “AXSENSEX”, “AXSENSEX”,
“AXSENSEX”, “AXSENSEX”, “AXSENSEX”, “AXSENSEX”, “AXSENSEX”, “AXSENSEX”,
“AXSENSEX”, “AXSENSEX”, “AXSENSEX”, “AXSENSEX”, “AXSENSEX”, “AXSENSEX”,
“AXSENSEX”, “AXSENSEX”, “AXSENSEX”, “SENSEXADD”, “SENSEXADD”,
“SENSEXADD”, “SENSEXADD”, “SENSEXADD”, “SENSEXADD”, “SENSEXADD”,
“SENSEXADD”, “SENSEXADD”, “SENSEXADD”, “SENSEXADD”, “SENSEXADD”,
“SENSEXADD”, “SENSEXADD”, “SENSEXADD”, “SENSEXADD”, “SENSEXADD”,
“SENSEXADD”, “SENSEXADD”, “SENSEXADD”, “SENSEXADD”, “SENSEXADD”,
“SENSEXADD”, “SENSEXADD”, “SENSEXADD”, “SENSEXADD”, “SENSEXETF”,
“SENSEXETF”, “SENSEXETF”, “SENSEXETF”, “SENSEXETF”, “SENSEXETF”,
“SENSEXETF”, “SENSEXETF”, “SENSEXETF”, “SENSEXETF”, “SENSEXETF”,
“SENSEXETF”, “SENSEXETF”, “SENSEXETF”, “SENSEXETF”, “SENSEXETF”,
“SENSEXETF”, “SENSEXETF”, “SENSEXETF”, “SENSEXETF”, “SENSEXETF”,
“SENSEXETF”, “SENSEXETF”, “SENSEXETF”, “SENSEXETF”, “SENSEXETF”,
“BSLSENETFG”, “BSLSENETFG”, “BSLSENETFG”, “BSLSENETFG”, “BSLSENETFG”,
“BSLSENETFG”, “BSLSENETFG”, “BSLSENETFG”, “BSLSENETFG”, “BSLSENETFG”,
“BSLSENETFG”, “BSLSENETFG”, “BSLSENETFG”, “BSLSENETFG”, “BSLSENETFG”,
“BSLSENETFG”, “BSLSENETFG”, “BSLSENETFG”, “BSLSENETFG”, “BSLSENETFG”,
“BSLSENETFG”, “BSLSENETFG”, “BSLSENETFG”, “BSLSENETFG”, “BSLSENETFG”,
“BSLSENETFG”, “GOLDETFADD”, “GOLDETFADD”, “GOLDETFADD”, “GOLDETFADD”,
“GOLDETFADD”, “GOLDETFADD”, “GOLDETFADD”, “GOLDETFADD”, “GOLDETFADD”,
“GOLDETFADD”, “GOLDETFADD”, “GOLDETFADD”, “GOLDETFADD”, “GOLDETFADD”,
“GOLDETFADD”, “GOLDETFADD”, “GOLDETFADD”, “GOLDETFADD”, “GOLDETFADD”,
“GOLDETFADD”, “GOLDETFADD”, “GOLDETFADD”, “GOLDETFADD”, “GOLDETFADD”,
“GOLDETFADD”, “GOLDETFADD”), TRDAY = c(“Jun12”, “Jun10”, “Jun06”,
“Jun04”, “May31”, “May29”, “May27”, “May23”, “May21”, “May16”,
“May14”, “May10”, “May08”, “May06”, “May02”, “Apr29”, “Apr25”,
“Apr23”, “Apr19”, “Apr16”, “Apr12”, “Apr09”, “Apr05”, “Apr03”,
“Apr01”, “Mar27”, “Jun12”, “Jun10”, “Jun06”, “Jun04”, “May31”,
“May29”, “May27”, “May23”, “May21”, “May16”, “May14”, “May10”,
“May08”, “May06”, “May02”, “Apr29”, “Apr25”, “Apr23”, “Apr19”,
“Apr16”, “Apr12”, “Apr09”, “Apr05”, “Apr03”, “Apr01”, “Mar27”,
“Jun12”, “Jun10”, “Jun06”, “Jun04”, “May31”, “May29”, “May27”,
“May23”, “May21”, “May16”, “May14”, “May10”, “May08”, “May06”,
“May02”, “Apr29”, “Apr25”, “Apr23”, “Apr19”, “Apr16”, “Apr12”,
“Apr09”, “Apr05”, “Apr03”, “Apr01”, “Mar27”, “Jun12”, “Jun10”,
“Jun06”, “Jun04”, “May31”, “May29”, “May27”, “May23”, “May21”,
“May16”, “May14”, “May10”, “May08”, “May06”, “May02”, “Apr29”,
“Apr25”, “Apr23”, “Apr19”, “Apr16”, “Apr12”, “Apr09”, “Apr05”,
“Apr03”, “Apr01”, “Mar27”, “Jun12”, “Jun10”, “Jun06”, “Jun04”,
“May31”, “May29”, “May27”, “May23”, “May21”, “May16”, “May14”,
“May10”, “May08”, “May06”, “May02”, “Apr29”, “Apr25”, “Apr23”,
“Apr19”, “Apr16”, “Apr12”, “Apr09”, “Apr05”, “Apr03”, “Apr01”,
“Mar27”, “Jun12”, “Jun10”, “Jun06”, “Jun04”, “May31”, “May29”,
“May27”, “May23”, “May21”, “May16”, “May14”, “May10”, “May08”,
“May06”, “May02”, “Apr29”, “Apr25”, “Apr23”, “Apr19”, “Apr16”,
“Apr12”, “Apr09”, “Apr05”, “Apr03”, “Apr01”, “Mar27”, “Jun12”,
“Jun10”, “Jun06”, “Jun04”, “May31”, “May29”, “May27”, “May23”,
“May21”, “May16”, “May14”, “May10”, “May08”, “May06”, “May02”,
“Apr29”, “Apr25”, “Apr23”, “Apr19”, “Apr16”, “Apr12”, “Apr09”,
“Apr05”, “Apr03”, “Apr01”, “Mar27”, “Jun12”, “Jun10”, “Jun06”,
“Jun04”, “May31”, “May29”, “May27”, “May23”, “May21”, “May16”,
“May14”, “May10”, “May08”, “May06”, “May02”, “Apr29”, “Apr25”,
“Apr23”, “Apr19”, “Apr16”, “Apr12”, “Apr09”, “Apr05”, “Apr03”,
“Apr01”, “Mar27”), AVMKTPC = c(122.04, 121.73, 121.58, 121.51,
121.57, 121.74, 121.67, 121.77, 121.69, 121.18, 121.14, 121.09,
121.02, 120.93, 120.9, 120.77, 120.6, 120.33, 120.28, 120.34,
120.32, 120.23, 120.35, 120.14, 120.03, 120.07, 85.06, 84.64,
83.42, 84.4, 82.91, 82.67, 83.32, 82.94, 81.98, 81.38, 80.62,
80.39, 81.01, 81.57, 82.19, 82.06, 81.75, 81.38, 80.66, 80.55,
81.98, 82.62, 82, 81.55, 81.37, 80.4, 81.82, 81.28, 79.38, 77.63,
77.56, 78.45, 79.71, 79.99, 79.64, 78.73, 77.56, 77.37, 77.95,
78.24, 78.87, 79.18, 78.92, 78.41, 78.03, 78.77, 80.79, 81.53,
80.89, 80.03, 79.47, 78.76, 77.49, 77.49, 76.51, 76.39, 75.34,
75.32, 76.21, 75.7, 74.9, 73.92, 73.85, 73.46, 73.77, 74.52,
74.97, 74.89, 74.79, 74.48, 73.74, 73.57, 74.76, 75.35, 74.93,
74.56, 74.49, 73.5, 76.8, 76.78, 77.5, 77.01, 75.4, 75.11, 75.7,
75.07, 74.38, 73.9, 73.47, 74, 74.51, 73.99, 74.47, 74.47, 74.62,
74.62, 73.65, 73.38, 74.57, 75.04, 74.67, 74.15, 73.51, 72.97,
77.34, 77.23, 75.96, 76.39, 76.06, 75.66, 75.84, 75.44, 74.62,
74.1, 73.63, 73.29, 73.31, 73.98, 74.69, 74.39, 74.36, 74.55,
73.38, 73.44, 74.51, 75.04, 74.63, 74.28, 73.99, 73.41, 75.48,
75.29, 74.15, 74.29, 73.48, 73.4, 74.04, 73.58, 73.07, 72.26,
71.7, 71.32, 71.8, 72.36, 73.13, 73, 72.54, 71.92, 71.37, 71.5,
72.76, 73.3, 73.03, 72.62, 72.66, 71.59, 70.98, 71, 71.6, 71.22,
71.39, 71.58, 71.44, 72.26, 73.19, 72.62, 71.93, 71.63, 70.92,
70.89, 71.01, 71.65, 71.45, 71.24, 72.52, 72.24, 71.63, 70.83,
69.52, 68.74, 67.74, 66.19), GRP = c(1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2), COL = c(1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L), TRORDER = c(1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L,
16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 1L, 2L,
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L,
17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L,
18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 1L, 2L, 3L, 4L,
5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L,
20L, 21L, 22L, 23L, 24L, 25L, 26L, 1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L,
21L, 22L, 23L, 24L, 25L, 26L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L,
22L, 23L, 24L, 25L, 26L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L,
10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L,
23L, 24L, 25L, 26L), MN = c(89, 89, 89, 89, 89, 89, 89, 89, 89,
89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89,
89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89,
89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89,
89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89,
89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89,
89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 73,
73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73,
73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73,
73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73,
73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73,
73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73,
73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73,
73, 73, 73, 73, 73, 73, 73)), class = c(“grouped_df”, “tbl_df”,
“tbl”, “data.frame”), row.names = c(NA, -208L), groups = structure(list(
GRP = c(1, 2), .rows = structure(list(1:104, 105:208), ptype = integer(0), class = c(“vctrs_list_of”,
“vctrs_vctr”, “list”))), class = c(“tbl_df”, “tbl”, “data.frame”
), row.names = c(NA, -2L), .drop = TRUE))