How to reinitialize from scratch GPT2 XL in HuggingFace?

I’m trying to confirm that my GPT-2 model is being trained from scratch, rather than using any pre-existing pre-trained weights. Here’s my approach:

  1. Load the pre-trained GPT-2 XL model: I load a pre-trained GPT-2 XL model using AutoModelForCausalLM.from_pretrained("gpt2-xl") and calculate the total L2 norm of the weights for this model.
  2. Initialize a new GPT-2 model from scratch: I then initialize a new GPT-2 model from scratch with a custom configuration using GPT2Config.
  3. Compare L2 norms: I calculate the L2 norm of the weights for both the pre-trained model and the freshly initialized model. My assumption is that the L2 norm of the scratch model should be much smaller compared to the pre-trained model if the scratch model is truly initialized from random weights.

Here’s the code snippet:

import torch
from transformers import GPT2LMHeadModel, GPT2Config, AutoModelForCausalLM

# Step 1: Load the pre-trained GPT-2 XL model
pretrained_model = AutoModelForCausalLM.from_pretrained("gpt2-xl")

# Step 2: Calculate the L2 norm of the weights for the pre-trained model
pretrained_weight_norm = 0.0
for param in pretrained_model.parameters():
    pretrained_weight_norm += torch.norm(param, p=2).item()

print(f"Total L2 norm of pre-trained model weights: {pretrained_weight_norm:.2f}")

# Step 3: Initialize a new GPT-2 model from scratch with custom configuration
config = GPT2Config(
    vocab_size=52000,  # Ensure this matches the tokenizer's vocabulary size
    n_ctx=1024,  # Context window size (number of tokens the model can see at once)
    bos_token_id=0,  # Begin-of-sequence token
    eos_token_id=1,  # End-of-sequence token
)
model = GPT2LMHeadModel(config)

# Step 4: Calculate the L2 norm of the weights for the freshly initialized model
scratch_weight_norm = 0.0
for param in model.parameters():
    scratch_weight_norm += torch.norm(param, p=2).item()

print(f"Total L2 norm of model initialized from scratch: {scratch_weight_norm:.2f}")

Is this method a valid way to confirm that the model is being trained from scratch? Are there any potential issues or better ways to verify that the model has no pre-existing learned weights?

Looks right

~/beyond-scale-language-data-diversity$ /opt/conda/envs/beyond_scale_div_coeff/bin/python /home/ubuntu/beyond-scale-language-data-diversity/playground/test_gpt2_pt_vs_reinit_scratch.py
config.json: 100%|███████████████████████████████████████████████████████████████████████████████████████████| 689/689 [00:00<00:00, 8.05MB/s]
model.safetensors: 100%|██████████████████████████████████████████████████████████████████████████████████| 6.43G/6.43G [00:29<00:00, 221MB/s]
generation_config.json: 100%|████████████████████████████████████████████████████████████████████████████████| 124/124 [00:00<00:00, 1.03MB/s]
Total L2 norm of pre-trained model weights: 24542.74
Total L2 norm of model initialized from scratch: 1637.31
(beyond_scale_div_coeff)                                                        

cross: https://discuss.huggingface.co/t/how-to-reinitialize-from-scratch-gpt-xl-in-hugging-face-hf/101905

ref: https://github.com/alycialee/beyond-scale-language-data-diversity/issues/18

The main thing as Hailey S Pointed out is that the HF reinits defaults are huge. I assume that with signal propagation theory/techniques one can predict the output would be to large for learning or something (see greg’s work), but for now I’m going with this:

#%%
import torch
import torch.nn as nn
from transformers import AutoModelForCausalLM, AutoTokenizer, GPT2Config

from pdb import set_trace as st

def reinit_gpt_neox_20B_inspired_use_case_llama2_mutates(model, 
                                                L: int,  # for beyond scale we filled the data to block size which is 4096 for max seq length llama2
                                                ):
    for name, module in model.named_modules():
        if isinstance(module, nn.Linear):  # all linear layers including MLP and attention, let's try this first given it's smaller
            D = module.in_features  # I think this is right size it's xW []
            std = 3 / (L * (D)**0.5)
            nn.init.normal_(module.weight, mean=0, std=std)
            if module.bias is not None:  # don't think biases matter cuz bias=False in all layers
                nn.init.constant_(module.bias, 0)
        elif str(module) == 'LlamaRMSNorm()':
            if hasattr(module, 'weight'):
                if module.weight is not None:  # todo: idk if needed for layer norm
                    nn.init.constant_(module.weight, 1.0)
            if hasattr(module, 'bias'):  # I don't think RMSNorm has bias, the whole point it doesn't think centering matters so bias is similar to centering
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0.0)
        else:  
            if hasattr(module, 'weight'):
                if module.weight is not None: 
                    D = module.weight.shape[0]
                    std = (2 / (D + 4*D))**0.5  # e.g., small init attention layers
                    nn.init.normal_(module.weight, mean=0, std=std)
            if hasattr(module, 'bias'):
                if module.bias is not None:  # don't think biases matter cuz bias=False in all layers
                    nn.init.constant_(module.bias, 0)
    return

def reinit_gpt2_weights_mutates(
        model, 
        # weight_std: float = 0.00000002,  # 0.02 ref: Hailey S doesn't recommend this huge value! ref: https://x.com/haileysch__/status/1822758486632997102 I'm choosing a really small value due to my previous research with Tommy Poggio suggested to us that larger inits give worse generalization error
        weight_std: float = 2e-6,  # 0.02 ref: Hailey S doesn't recommend this huge value! ref: https://x.com/haileysch__/status/1822758486632997102 I'm choosing a really small value due to my previous research with Tommy Poggio suggested to us that larger inits give worse generalization error
        # weight_std: float = 0.0,
        bias_std: float = 0.0, 
        verbose: bool = False,
        ) -> None:
    """ 
    Why we chose < 0.02 for standard deviation: https://github.com/alycialee/beyond-scale-language-data-diversity/issues/18
    Reinit for gpt2 only test for xl: https://huggingface.co/openai-community/gpt2-xl
    """
    model_weight_norm = sum([torch.norm(param, p=2).item() for param in model.parameters()]) if verbose else None
    print(f'{model_weight_norm=}') if verbose else None
    for module_name, module in model.named_modules():
        print(f'{module_name=} {isinstance(module, nn.Linear)=} {type(module)=}') if verbose else None
        if isinstance(module, nn.Linear):
            # nn.init.normal_(module.weight, mean=0, std=0.02) # original, evil!
            print(f'{module.weight.norm(2)=}') if verbose else None
            nn.init.normal_(module.weight, mean=0, std=weight_std)
            print(f'{module.weight.norm(2)=}') if verbose else None
            if module.bias is not None:
                # gpt suggestion: https://chatgpt.com/c/b9d34414-a123-48d6-bbae-334dedb580f3
                nn.init.constant_(module.bias, bias_std)
        elif isinstance(module, nn.Embedding):
            print(f'{module.weight.norm(2)=}') if verbose else None
            nn.init.normal_(module.weight, mean=0, std=weight_std)
            print(f'{module.weight.norm(2)=}') if verbose else None
        elif isinstance(module, nn.Dropout):
            pass # has no params
        elif isinstance(module, nn.LayerNorm):
            # gpt suggestion: https://chatgpt.com/c/b9d34414-a123-48d6-bbae-334dedb580f3
            print(f'{module.weight.norm(2)=}') if verbose else None
            nn.init.constant_(module.weight, 0.0)
            print(f'{module.weight.norm(2)=}') if verbose else None
            if module.bias is not None:
                nn.init.constant_(module.bias, 0.0)
        elif isinstance(module, nn.Conv1d):
            print(f'{module.weight.norm(2)=}') if verbose else None
            nn.init.normal_(module.weight, mean=0, std=weight_std)
            print(f'{module.weight.norm(2)=}') if verbose else None
            if module.bias is not None:
                nn.init.constant_(module.bias, bias_std)
        # elif isinstance(module, nn.NewGELUActivation):
        #     pass
        else:  
            if hasattr(module, 'weight'):
                if module.weight is not None: 
                    D = module.weight.shape[0]
                    # std = (2 / (D + 4*D))**0.5  # e.g., small init attention layers
                    std = weight_std
                    nn.init.normal_(module.weight, mean=0, std=std)
            if hasattr(module, 'bias'):
                if module.bias is not None:  # don't think biases matter cuz bias=False in all layers
                    nn.init.constant_(module.bias, bias_std)
    model_weight_norm = sum([torch.norm(param, p=2).item() for param in model.parameters()]) if verbose else None
    print(f'{model_weight_norm=}') if verbose else None
    return

# Step 1: Load the pre-trained GPT-2 XL model
torch.cuda.empty_cache() # Clear CUDA cache to free up memory
torch_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32 
model = AutoModelForCausalLM.from_pretrained("gpt2-xl", torch_dtype=torch_dtype, trust_remote_code=True)
print(f'{model=}')
device = torch.device(f"cuda:{0}" if torch.cuda.is_available() else "cpu")
model = model.to(device)
pretrained_tokenizer = AutoTokenizer.from_pretrained("gpt2-xl", padding_side="right", trust_remote_code=True)
pretrained_tokenizer.pad_token = pretrained_tokenizer.eos_token if pretrained_tokenizer.pad_token_id is None else pretrained_tokenizer.pad_token
print(f'{pretrained_tokenizer=}n{pretrained_tokenizer.bos_token_id=} {pretrained_tokenizer.eos_token_id=} {pretrained_tokenizer.pad_token_id=} {pretrained_tokenizer.vocab_size=}')
# Step 2: Calculate the L2 norm of the weights for the pre-trained model
pretrained_weight_norm = sum([torch.norm(param, p=2).item() for param in model.parameters()])
print(f"Total L2 norm of pre-trained model weights: {pretrained_weight_norm:.2f}")

# Step 1: Initialize a new GPT-2 model from scratch with custom configuration
model = AutoModelForCausalLM.from_pretrained("gpt2-xl", torch_dtype=torch_dtype, trust_remote_code=True)
device = torch.device(f"cuda:{0}" if torch.cuda.is_available() else "cpu")
model = model.to(device)
config = GPT2Config(
    vocab_size=pretrained_tokenizer.vocab_size,  # Ensure this matches the tokenizer's vocabulary size
    n_ctx=1024,  # Context window size (number of tokens the model can see at once)
    bos_token_id=pretrained_tokenizer.bos_token_id,  # Begin-of-sequence token
    eos_token_id=pretrained_tokenizer.eos_token_id,  # End-of-sequence token
    pad_token_id=pretrained_tokenizer.eos_token_id,  # pad-sequence token
)
model = AutoModelForCausalLM.from_config(config)
# Step 2: Calculate the L2 norm of the weights for the freshly initialized model
scratch_weight_norm = sum([torch.norm(param, p=2).item() for param in model.parameters()])
print(f"Total L2 norm of model initialized from scratch: {scratch_weight_norm:.2f}")

# Step 1: Reinit GPT2 with really small init
model = AutoModelForCausalLM.from_pretrained("gpt2-xl", torch_dtype=torch_dtype, trust_remote_code=True)
device = torch.device(f"cuda:{0}" if torch.cuda.is_available() else "cpu")
model = model.to(device)
reinit_gpt2_weights_mutates(model)
scratch_weight_norm_small_reinit = sum([torch.norm(param, p=2).item() for param in model.parameters()])
print(f"Total L2 norm of model initialized from scratch with small reinit (not default HF config): {scratch_weight_norm_small_reinit:.2f}")

# Step 1: Reinit GPT2 with really small init
model = AutoModelForCausalLM.from_pretrained("gpt2-xl", torch_dtype=torch_dtype, trust_remote_code=True)
device = torch.device(f"cuda:{0}" if torch.cuda.is_available() else "cpu")
model = model.to(device)
reinit_gpt_neox_20B_inspired_use_case_llama2_mutates(model, 1024)
scratch_weight_norm_small_reinit = sum([torch.norm(param, p=2).item() for param in model.parameters()])
print(f"Total L2 norm of model initialized from scratch with gpt_neox_20B reinit (not default HF config): {scratch_weight_norm_small_reinit:.2f}")

# Justification:
# If the model is truly being initialized from scratch, the weight norm should be much smaller compared to the pre-trained model. 
# This confirms that the training process is starting from a random initialization and not from any pre-existing pre-trained weights.

It did give a smaller reinit total l2 norm of weights but until I run things/train I don’t know if that is ok, but look weights look ok (but larger than I expected):

~/beyond-scale-language-data-diversity# python playground/test_gpt2_pt_vs_reinit_scratch.py

model=GPT2LMHeadModel(
  (transformer): GPT2Model(
    (wte): Embedding(50257, 1600)
    (wpe): Embedding(1024, 1600)
    (drop): Dropout(p=0.1, inplace=False)
    (h): ModuleList(
      (0-47): 48 x GPT2Block(
        (ln_1): LayerNorm((1600,), eps=1e-05, elementwise_affine=True)
        (attn): GPT2SdpaAttention(
          (c_attn): Conv1D()
          (c_proj): Conv1D()
          (attn_dropout): Dropout(p=0.1, inplace=False)
          (resid_dropout): Dropout(p=0.1, inplace=False)
        )
        (ln_2): LayerNorm((1600,), eps=1e-05, elementwise_affine=True)
        (mlp): GPT2MLP(
          (c_fc): Conv1D()
          (c_proj): Conv1D()
          (act): NewGELUActivation()
          (dropout): Dropout(p=0.1, inplace=False)
        )
      )
    )
    (ln_f): LayerNorm((1600,), eps=1e-05, elementwise_affine=True)
  )
  (lm_head): Linear(in_features=1600, out_features=50257, bias=False)
)
pretrained_tokenizer=GPT2TokenizerFast(name_or_path='gpt2-xl', vocab_size=50257, model_max_length=1024, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'bos_token': '<|endoftext|>', 'eos_token': '<|endoftext|>', 'unk_token': '<|endoftext|>', 'pad_token': '<|endoftext|>'}, clean_up_tokenization_spaces=True),  added_tokens_decoder={
        50256: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=True),
}
pretrained_tokenizer.bos_token_id=50256 pretrained_tokenizer.eos_token_id=50256 pretrained_tokenizer.pad_token_id=50256 pretrained_tokenizer.vocab_size=50257
Total L2 norm of pre-trained model weights: 24551.96
Total L2 norm of model initialized from scratch: 1635.31
Total L2 norm of model initialized from scratch with small reinit (not default HF config): 1.06
Total L2 norm of model initialized from scratch with gpt_neox_20B reinit (not default HF config): 7035.41

I will document things here: https://github.com/alycialee/beyond-scale-language-data-diversity/issues/18 but links can die so copied the main code.

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật