How to pass more than 2 values in Hyde Document Embedding vectorstore retriever?

I am trying to create hyde based embedding for the requirement and get the relevant documents from it. Then those relevant documents will be passed as context and original question. The prompt for the hyde is different than the one which I am using for getting final answer

hyde_prompt_template =""" get the guidelines to this requirement {input}. Use the {guideline_name} which are in the context and think how these guidelines will be helpful to this requirement. print only the final output. """

` main_prompt = “”You are a professional senior software architect and you need to find out relevant
guidelines for the detailed requirement
Generate guidelines for the below detailed requirement in {input}
Use the guideline information from {context} and give the relevant guidelines for the {input} from {context} only
Provide the guidelines only from context and don’t use your own knowledge
GIVE THE FINAL OUTPUT IN THE BELOW FORMAT
Guideline Name:

Guidelines to follow:
The guideline name is coming from the {guideline name}
“””
`
I tried passing more than 2 values in the below code

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>from langchain.chains.hyde.base import HypotheticalDocumentEmbedder
from langchain.prompts import PromptTemplate
from langchain_openai import OpenAIEmbeddings, OpenAI, ChatOpenAI
from langchain.chains.llm import LLMChain
from langchain_community.vectorstores.faiss import FAISS
hyde_prompt_template = """
get the guidelines to this requirement {input}.
Use the {guideline_name} which are in the context and
think how these guidelines will be helpful to this requirement. print
only the final output.
"""
prompt = PromptTemplate.from_template(hyde_prompt_template )
llm_chain = LLMChain(llm=llm, prompt=prompt)
hyde_embeddings = HypotheticalDocumentEmbedder(
llm_chain=llm_chain, base_embeddings=base_embeddings
)
faiss = FAISS.load_local(folder_path="local path",
embeddings=hyde_embeddings,
allow_dangerous_deserialization=True
)
retriever = faiss.as_retriever()
retriever.invoke({"input": requirement, "guideline_name": "GDPR"})
</code>
<code>from langchain.chains.hyde.base import HypotheticalDocumentEmbedder from langchain.prompts import PromptTemplate from langchain_openai import OpenAIEmbeddings, OpenAI, ChatOpenAI from langchain.chains.llm import LLMChain from langchain_community.vectorstores.faiss import FAISS hyde_prompt_template = """ get the guidelines to this requirement {input}. Use the {guideline_name} which are in the context and think how these guidelines will be helpful to this requirement. print only the final output. """ prompt = PromptTemplate.from_template(hyde_prompt_template ) llm_chain = LLMChain(llm=llm, prompt=prompt) hyde_embeddings = HypotheticalDocumentEmbedder( llm_chain=llm_chain, base_embeddings=base_embeddings ) faiss = FAISS.load_local(folder_path="local path", embeddings=hyde_embeddings, allow_dangerous_deserialization=True ) retriever = faiss.as_retriever() retriever.invoke({"input": requirement, "guideline_name": "GDPR"}) </code>
from langchain.chains.hyde.base import HypotheticalDocumentEmbedder
from langchain.prompts import PromptTemplate
from langchain_openai import OpenAIEmbeddings, OpenAI, ChatOpenAI
from langchain.chains.llm import LLMChain
from langchain_community.vectorstores.faiss import FAISS

hyde_prompt_template = """
get the guidelines to this requirement {input}. 
Use the {guideline_name} which are in the context and 
think how these guidelines will be helpful to this requirement. print 
only the final output.
"""
prompt = PromptTemplate.from_template(hyde_prompt_template )

llm_chain = LLMChain(llm=llm, prompt=prompt)

hyde_embeddings = HypotheticalDocumentEmbedder(
    llm_chain=llm_chain, base_embeddings=base_embeddings
)

faiss = FAISS.load_local(folder_path="local path",
                        embeddings=hyde_embeddings,
                        allow_dangerous_deserialization=True
                    )

retriever = faiss.as_retriever()

retriever.invoke({"input": requirement, "guideline_name": "GDPR"})

But I am getting below error

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>KeyError Traceback (most recent call last)
Cell In[59], line 1
----> 1 retriever.invoke({"input": requirement})
File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_coreretrievers.py:194, in BaseRetriever.invoke(self, input, config, **kwargs)
175 """Invoke the retriever to get relevant documents.
176
177 Main entry point for synchronous retriever invocations.
(...)
191 retriever.invoke("query")
192 """
193 config = ensure_config(config)
--> 194 return self.get_relevant_documents(
195 input,
196 callbacks=config.get("callbacks"),
197 tags=config.get("tags"),
198 metadata=config.get("metadata"),
199 run_name=config.get("run_name"),
200 **kwargs,
201 )
File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_core_apideprecation.py:148, in deprecated..deprecate..warning_emitting_wrapper(*args, **kwargs)
146 warned = True
147 emit_warning()
--> 148 return wrapped(*args, **kwargs)
File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_coreretrievers.py:323, in BaseRetriever.get_relevant_documents(self, query, callbacks, tags, metadata, run_name, **kwargs)
321 except Exception as e:
322 run_manager.on_retriever_error(e)
--> 323 raise e
324 else:
325 run_manager.on_retriever_end(
326 result,
327 )
File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_coreretrievers.py:316, in BaseRetriever.get_relevant_documents(self, query, callbacks, tags, metadata, run_name, **kwargs)
314 _kwargs = kwargs if self._expects_other_args else {}
315 if self._new_arg_supported:
--> 316 result = self._get_relevant_documents(
317 query, run_manager=run_manager, **_kwargs
318 )
319 else:
320 result = self._get_relevant_documents(query, **_kwargs)
File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_corevectorstores.py:696, in VectorStoreRetriever._get_relevant_documents(self, query, run_manager)
692 def _get_relevant_documents(
693 self, query: str, *, run_manager: CallbackManagerForRetrieverRun
694 ) -> List[Document]:
695 if self.search_type == "similarity":
--> 696 docs = self.vectorstore.similarity_search(query, **self.search_kwargs)
697 elif self.search_type == "similarity_score_threshold":
698 docs_and_similarities = (
699 self.vectorstore.similarity_search_with_relevance_scores(
700 query, **self.search_kwargs
701 )
702 )
File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_communityvectorstoresfaiss.py:530, in FAISS.similarity_search(self, query, k, filter, fetch_k, **kwargs)
510 def similarity_search(
511 self,
512 query: str,
(...)
516 **kwargs: Any,
517 ) -> List[Document]:
518 """Return docs most similar to query.
519
520 Args:
(...)
528 List of Documents most similar to the query.
529 """
--> 530 docs_and_scores = self.similarity_search_with_score(
531 query, k, filter=filter, fetch_k=fetch_k, **kwargs
532 )
533 return [doc for doc, _ in docs_and_scores]
File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_communityvectorstoresfaiss.py:402, in FAISS.similarity_search_with_score(self, query, k, filter, fetch_k, **kwargs)
378 def similarity_search_with_score(
379 self,
380 query: str,
(...)
384 **kwargs: Any,
385 ) -> List[Tuple[Document, float]]:
386 """Return docs most similar to query.
387
388 Args:
(...)
400 L2 distance in float. Lower score represents more similarity.
401 """
--> 402 embedding = self._embed_query(query)
403 docs = self.similarity_search_with_score_by_vector(
404 embedding,
405 k,
(...)
408 **kwargs,
409 )
410 return docs
File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_communityvectorstoresfaiss.py:154, in FAISS._embed_query(self, text)
152 def _embed_query(self, text: str) -> List[float]:
153 if isinstance(self.embedding_function, Embeddings):
--> 154 return self.embedding_function.embed_query(text)
155 else:
156 return self.embedding_function(text)
File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchainchainshydebase.py:57, in HypotheticalDocumentEmbedder.embed_query(self, text)
55 """Generate a hypothetical document and embedded it."""
56 var_name = self.llm_chain.input_keys[0]
---> 57 result = self.llm_chain.generate([{var_name: text}])
58 documents = [generation.text for generation in result.generations[0]]
59 embeddings = self.embed_documents(documents)
File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchainchainsllm.py:135, in LLMChain.generate(self, input_list, run_manager)
129 def generate(
130 self,
131 input_list: List[Dict[str, Any]],
132 run_manager: Optional[CallbackManagerForChainRun] = None,
133 ) -> LLMResult:
134 """Generate LLM result from inputs."""
--> 135 prompts, stop = self.prep_prompts(input_list, run_manager=run_manager)
136 callbacks = run_manager.get_child() if run_manager else None
137 if isinstance(self.llm, BaseLanguageModel):
File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchainchainsllm.py:196, in LLMChain.prep_prompts(self, input_list, run_manager)
194 prompts = []
195 for inputs in input_list:
--> 196 selected_inputs = {k: inputs[k] for k in self.prompt.input_variables}
197 prompt = self.prompt.format_prompt(**selected_inputs)
198 _colored_text = get_colored_text(prompt.to_string(), "green")
KeyError: 'input'
</code>
<code>KeyError Traceback (most recent call last) Cell In[59], line 1 ----> 1 retriever.invoke({"input": requirement}) File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_coreretrievers.py:194, in BaseRetriever.invoke(self, input, config, **kwargs) 175 """Invoke the retriever to get relevant documents. 176 177 Main entry point for synchronous retriever invocations. (...) 191 retriever.invoke("query") 192 """ 193 config = ensure_config(config) --> 194 return self.get_relevant_documents( 195 input, 196 callbacks=config.get("callbacks"), 197 tags=config.get("tags"), 198 metadata=config.get("metadata"), 199 run_name=config.get("run_name"), 200 **kwargs, 201 ) File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_core_apideprecation.py:148, in deprecated..deprecate..warning_emitting_wrapper(*args, **kwargs) 146 warned = True 147 emit_warning() --> 148 return wrapped(*args, **kwargs) File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_coreretrievers.py:323, in BaseRetriever.get_relevant_documents(self, query, callbacks, tags, metadata, run_name, **kwargs) 321 except Exception as e: 322 run_manager.on_retriever_error(e) --> 323 raise e 324 else: 325 run_manager.on_retriever_end( 326 result, 327 ) File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_coreretrievers.py:316, in BaseRetriever.get_relevant_documents(self, query, callbacks, tags, metadata, run_name, **kwargs) 314 _kwargs = kwargs if self._expects_other_args else {} 315 if self._new_arg_supported: --> 316 result = self._get_relevant_documents( 317 query, run_manager=run_manager, **_kwargs 318 ) 319 else: 320 result = self._get_relevant_documents(query, **_kwargs) File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_corevectorstores.py:696, in VectorStoreRetriever._get_relevant_documents(self, query, run_manager) 692 def _get_relevant_documents( 693 self, query: str, *, run_manager: CallbackManagerForRetrieverRun 694 ) -> List[Document]: 695 if self.search_type == "similarity": --> 696 docs = self.vectorstore.similarity_search(query, **self.search_kwargs) 697 elif self.search_type == "similarity_score_threshold": 698 docs_and_similarities = ( 699 self.vectorstore.similarity_search_with_relevance_scores( 700 query, **self.search_kwargs 701 ) 702 ) File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_communityvectorstoresfaiss.py:530, in FAISS.similarity_search(self, query, k, filter, fetch_k, **kwargs) 510 def similarity_search( 511 self, 512 query: str, (...) 516 **kwargs: Any, 517 ) -> List[Document]: 518 """Return docs most similar to query. 519 520 Args: (...) 528 List of Documents most similar to the query. 529 """ --> 530 docs_and_scores = self.similarity_search_with_score( 531 query, k, filter=filter, fetch_k=fetch_k, **kwargs 532 ) 533 return [doc for doc, _ in docs_and_scores] File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_communityvectorstoresfaiss.py:402, in FAISS.similarity_search_with_score(self, query, k, filter, fetch_k, **kwargs) 378 def similarity_search_with_score( 379 self, 380 query: str, (...) 384 **kwargs: Any, 385 ) -> List[Tuple[Document, float]]: 386 """Return docs most similar to query. 387 388 Args: (...) 400 L2 distance in float. Lower score represents more similarity. 401 """ --> 402 embedding = self._embed_query(query) 403 docs = self.similarity_search_with_score_by_vector( 404 embedding, 405 k, (...) 408 **kwargs, 409 ) 410 return docs File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_communityvectorstoresfaiss.py:154, in FAISS._embed_query(self, text) 152 def _embed_query(self, text: str) -> List[float]: 153 if isinstance(self.embedding_function, Embeddings): --> 154 return self.embedding_function.embed_query(text) 155 else: 156 return self.embedding_function(text) File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchainchainshydebase.py:57, in HypotheticalDocumentEmbedder.embed_query(self, text) 55 """Generate a hypothetical document and embedded it.""" 56 var_name = self.llm_chain.input_keys[0] ---> 57 result = self.llm_chain.generate([{var_name: text}]) 58 documents = [generation.text for generation in result.generations[0]] 59 embeddings = self.embed_documents(documents) File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchainchainsllm.py:135, in LLMChain.generate(self, input_list, run_manager) 129 def generate( 130 self, 131 input_list: List[Dict[str, Any]], 132 run_manager: Optional[CallbackManagerForChainRun] = None, 133 ) -> LLMResult: 134 """Generate LLM result from inputs.""" --> 135 prompts, stop = self.prep_prompts(input_list, run_manager=run_manager) 136 callbacks = run_manager.get_child() if run_manager else None 137 if isinstance(self.llm, BaseLanguageModel): File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchainchainsllm.py:196, in LLMChain.prep_prompts(self, input_list, run_manager) 194 prompts = [] 195 for inputs in input_list: --> 196 selected_inputs = {k: inputs[k] for k in self.prompt.input_variables} 197 prompt = self.prompt.format_prompt(**selected_inputs) 198 _colored_text = get_colored_text(prompt.to_string(), "green") KeyError: 'input' </code>
KeyError Traceback (most recent call last)
Cell In[59], line 1
----> 1 retriever.invoke({"input": requirement})

File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_coreretrievers.py:194, in BaseRetriever.invoke(self, input, config, **kwargs)
175 """Invoke the retriever to get relevant documents.
176
177 Main entry point for synchronous retriever invocations.
(...)
191 retriever.invoke("query")
192 """
193 config = ensure_config(config)
--> 194 return self.get_relevant_documents(
195 input,
196 callbacks=config.get("callbacks"),
197 tags=config.get("tags"),
198 metadata=config.get("metadata"),
199 run_name=config.get("run_name"),
200 **kwargs,
201 )

File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_core_apideprecation.py:148, in deprecated..deprecate..warning_emitting_wrapper(*args, **kwargs)
146 warned = True
147 emit_warning()
--> 148 return wrapped(*args, **kwargs)

File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_coreretrievers.py:323, in BaseRetriever.get_relevant_documents(self, query, callbacks, tags, metadata, run_name, **kwargs)
321 except Exception as e:
322 run_manager.on_retriever_error(e)
--> 323 raise e
324 else:
325 run_manager.on_retriever_end(
326 result,
327 )

File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_coreretrievers.py:316, in BaseRetriever.get_relevant_documents(self, query, callbacks, tags, metadata, run_name, **kwargs)
314 _kwargs = kwargs if self._expects_other_args else {}
315 if self._new_arg_supported:
--> 316 result = self._get_relevant_documents(
317 query, run_manager=run_manager, **_kwargs
318 )
319 else:
320 result = self._get_relevant_documents(query, **_kwargs)

File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_corevectorstores.py:696, in VectorStoreRetriever._get_relevant_documents(self, query, run_manager)
692 def _get_relevant_documents(
693 self, query: str, *, run_manager: CallbackManagerForRetrieverRun
694 ) -> List[Document]:
695 if self.search_type == "similarity":
--> 696 docs = self.vectorstore.similarity_search(query, **self.search_kwargs)
697 elif self.search_type == "similarity_score_threshold":
698 docs_and_similarities = (
699 self.vectorstore.similarity_search_with_relevance_scores(
700 query, **self.search_kwargs
701 )
702 )

File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_communityvectorstoresfaiss.py:530, in FAISS.similarity_search(self, query, k, filter, fetch_k, **kwargs)
510 def similarity_search(
511 self,
512 query: str,
(...)
516 **kwargs: Any,
517 ) -> List[Document]:
518 """Return docs most similar to query.
519
520 Args:
(...)
528 List of Documents most similar to the query.
529 """
--> 530 docs_and_scores = self.similarity_search_with_score(
531 query, k, filter=filter, fetch_k=fetch_k, **kwargs
532 )
533 return [doc for doc, _ in docs_and_scores]

File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_communityvectorstoresfaiss.py:402, in FAISS.similarity_search_with_score(self, query, k, filter, fetch_k, **kwargs)
378 def similarity_search_with_score(
379 self,
380 query: str,
(...)
384 **kwargs: Any,
385 ) -> List[Tuple[Document, float]]:
386 """Return docs most similar to query.
387
388 Args:
(...)
400 L2 distance in float. Lower score represents more similarity.
401 """
--> 402 embedding = self._embed_query(query)
403 docs = self.similarity_search_with_score_by_vector(
404 embedding,
405 k,
(...)
408 **kwargs,
409 )
410 return docs

File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchain_communityvectorstoresfaiss.py:154, in FAISS._embed_query(self, text)
152 def _embed_query(self, text: str) -> List[float]:
153 if isinstance(self.embedding_function, Embeddings):
--> 154 return self.embedding_function.embed_query(text)
155 else:
156 return self.embedding_function(text)

File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchainchainshydebase.py:57, in HypotheticalDocumentEmbedder.embed_query(self, text)
55 """Generate a hypothetical document and embedded it."""
56 var_name = self.llm_chain.input_keys[0]
---> 57 result = self.llm_chain.generate([{var_name: text}])
58 documents = [generation.text for generation in result.generations[0]]
59 embeddings = self.embed_documents(documents)

File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchainchainsllm.py:135, in LLMChain.generate(self, input_list, run_manager)
129 def generate(
130 self,
131 input_list: List[Dict[str, Any]],
132 run_manager: Optional[CallbackManagerForChainRun] = None,
133 ) -> LLMResult:
134 """Generate LLM result from inputs."""
--> 135 prompts, stop = self.prep_prompts(input_list, run_manager=run_manager)
136 callbacks = run_manager.get_child() if run_manager else None
137 if isinstance(self.llm, BaseLanguageModel):

File c:GEN_AIcompliance-and-guidelinesvenvLibsite-packageslangchainchainsllm.py:196, in LLMChain.prep_prompts(self, input_list, run_manager)
194 prompts = []
195 for inputs in input_list:
--> 196 selected_inputs = {k: inputs[k] for k in self.prompt.input_variables}
197 prompt = self.prompt.format_prompt(**selected_inputs)
198 _colored_text = get_colored_text(prompt.to_string(), "green")

KeyError: 'input'

New contributor

Dikshant Gupta is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật