How to make CNN invariant to position of a pattern in DNA sequence?

I am trying to do binary classification by finding a pattern (say “CTCATGTCA”) in DNA sequence using CNN. I wrote a model in pytorch. When the pattern is at the center of the sequence, the model detects it. But if the pattern is at random places, the model is not working. How to make CNN invariant to position of the pattern?

This is my code:

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>import logging
import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
from sklearn import metrics
from skorch import NeuralNetClassifier
from skorch.callbacks import EpochScoring
from torch.utils.data import DataLoader, Dataset
import numpy as np
import constants
timber = logging.getLogger()
logging.basicConfig(level=logging.INFO) # change to level=logging.DEBUG to print more logs...
# utils
def one_hot_e(dna_seq: str) -> np.ndarray:
mydict = {'A': np.asarray([1.0, 0.0, 0.0, 0.0]), 'C': np.asarray([0.0, 1.0, 0.0, 0.0]),
'G': np.asarray([0.0, 0.0, 1.0, 0.0]), 'T': np.asarray([0.0, 0.0, 0.0, 1.0]),
'N': np.asarray([0.0, 0.0, 0.0, 0.0]), 'H': np.asarray([0.0, 0.0, 0.0, 0.0]),
'a': np.asarray([1.0, 0.0, 0.0, 0.0]), 'c': np.asarray([0.0, 1.0, 0.0, 0.0]),
'g': np.asarray([0.0, 0.0, 1.0, 0.0]), 't': np.asarray([0.0, 0.0, 0.0, 1.0]),
'n': np.asarray([0.0, 0.0, 0.0, 0.0]), '-': np.asarray([0.0, 0.0, 0.0, 0.0])}
size_of_a_seq: int = len(dna_seq)
# forward = np.zeros(shape=(size_of_a_seq, 4))
forward_list: list = [mydict[dna_seq[i]] for i in range(0, size_of_a_seq)]
encoded = np.asarray(forward_list)
return encoded
def one_hot_e_column(column: pd.Series) -> np.ndarray:
tmp_list: list = [one_hot_e(seq) for seq in column]
encoded_column = np.asarray(tmp_list)
return encoded_column
def reverse_dna_seq(dna_seq: str) -> str:
# m_reversed = ""
# for i in range(0, len(dna_seq)):
# m_reversed = dna_seq[i] + m_reversed
# return m_reversed
return dna_seq[::-1]
def complement_dna_seq(dna_seq: str) -> str:
comp_map = {"A": "T", "C": "G", "T": "A", "G": "C",
"a": "t", "c": "g", "t": "a", "g": "c",
"N": "N", "H": "H", "-": "-",
"n": "n", "h": "h"
}
comp_dna_seq_list: list = [comp_map[nucleotide] for nucleotide in dna_seq]
comp_dna_seq: str = "".join(comp_dna_seq_list)
return comp_dna_seq
def reverse_complement_dna_seq(dna_seq: str) -> str:
return reverse_dna_seq(complement_dna_seq(dna_seq))
def reverse_complement_dna_seqs(column: pd.Series) -> pd.Series:
tmp_list: list = [reverse_complement_dna_seq(seq) for seq in column]
rc_column = pd.Series(tmp_list)
return rc_column
class CNN1D(nn.Module):
def __init__(self,
in_channel_num_of_nucleotides=4,
kernel_size_k_mer_motif=4,
dnn_size=256,
num_filters=1,
lstm_hidden_size=128,
*args, **kwargs):
super().__init__(*args, **kwargs)
self.conv1d = nn.Conv1d(in_channels=in_channel_num_of_nucleotides, out_channels=num_filters,
kernel_size=kernel_size_k_mer_motif, stride=2)
self.activation = nn.ReLU()
self.pooling = nn.MaxPool1d(kernel_size=kernel_size_k_mer_motif, stride=2)
self.flatten = nn.Flatten()
# linear layer
self.dnn2 = nn.Linear(in_features=14 * num_filters, out_features=dnn_size)
self.act2 = nn.Sigmoid()
self.dropout2 = nn.Dropout(p=0.2)
self.out = nn.Linear(in_features=dnn_size, out_features=1)
self.out_act = nn.Sigmoid()
pass
def forward(self, x):
timber.debug(constants.magenta + f"h0: {x}")
h = self.conv1d(x)
timber.debug(constants.green + f"h1: {h}")
h = self.activation(h)
timber.debug(constants.magenta + f"h2: {h}")
h = self.pooling(h)
timber.debug(constants.blue + f"h3: {h}")
timber.debug(constants.cyan + f"h4: {h}")
h = self.flatten(h)
timber.debug(constants.magenta + f"h5: {h},n shape {h.shape}, size {h.size}")
h = self.dnn2(h)
timber.debug(constants.green + f"h6: {h}")
h = self.act2(h)
timber.debug(constants.blue + f"h7: {h}")
h = self.dropout2(h)
timber.debug(constants.cyan + f"h8: {h}")
h = self.out(h)
timber.debug(constants.magenta + f"h9: {h}")
h = self.out_act(h)
timber.debug(constants.green + f"h10: {h}")
# h = (h > 0.5).float() # <---- should this go here?
# timber.debug(constants.green + f"h11: {h}")
return h
class CustomDataset(Dataset):
def __init__(self, dataframe):
self.x = dataframe["Sequence"]
self.y = dataframe["class"]
def __len__(self):
return len(self.y)
def preprocessing(self, x1, y1) -> (torch.Tensor, torch.Tensor, torch.Tensor):
forward_col = x1
backward_col = reverse_complement_dna_seqs(forward_col)
forward_one_hot_e_col: np.ndarray = one_hot_e_column(forward_col)
backward_one_hot_e_col: np.ndarray = one_hot_e_column(backward_col)
tr_xf_tensor = torch.Tensor(forward_one_hot_e_col).permute(1, 2, 0)
tr_xb_tensor = torch.Tensor(backward_one_hot_e_col).permute(1, 2, 0)
# timber.debug(f"y1 {y1}")
tr_y1 = np.array([y1]) # <--- need to put it inside brackets
return tr_xf_tensor, tr_xb_tensor, tr_y1
def __getitem__(self, idx):
m_seq = self.x.iloc[idx]
labels = self.y.iloc[idx]
xf, xb, y = self.preprocessing(m_seq, labels)
timber.debug(f"xf -> {xf.shape}, xb -> {xb.shape}, y -> {y}")
return xf, xb, y
def test_dataloader():
df = pd.read_csv("todo.csv")
X = df["Sequence"]
y = df["class"]
ds = CustomDataset(df)
loader = DataLoader(ds, shuffle=True, batch_size=16)
train_loader = loader
for data in train_loader:
timber.debug(data)
# xf, xb, y = data[0], data[1], data[2]
# timber.debug(f"xf -> {xf.shape}, xb -> {xb.shape}, y -> {y.shape}")
pass
def get_callbacks() -> list:
# metric.auc ( uses trapezoidal rule) gave an error: x is neither increasing, nor decreasing. so I had to remove it
return [
("tr_acc", EpochScoring(
metrics.accuracy_score,
lower_is_better=False,
on_train=True,
name="train_acc",
)),
("tr_recall", EpochScoring(
metrics.recall_score,
lower_is_better=False,
on_train=True,
name="train_recall",
)),
("tr_precision", EpochScoring(
metrics.precision_score,
lower_is_better=False,
on_train=True,
name="train_precision",
)),
("tr_roc_auc", EpochScoring(
metrics.roc_auc_score,
lower_is_better=False,
on_train=False,
name="tr_auc"
)),
("tr_f1", EpochScoring(
metrics.f1_score,
lower_is_better=False,
on_train=False,
name="tr_f1"
)),
# ("valid_acc1", EpochScoring(
# metrics.accuracy_score,
# lower_is_better=False,
# on_train=False,
# name="valid_acc1",
# )),
("valid_recall", EpochScoring(
metrics.recall_score,
lower_is_better=False,
on_train=False,
name="valid_recall",
)),
("valid_precision", EpochScoring(
metrics.precision_score,
lower_is_better=False,
on_train=False,
name="valid_precision",
)),
("valid_roc_auc", EpochScoring(
metrics.roc_auc_score,
lower_is_better=False,
on_train=False,
name="valid_auc"
)),
("valid_f1", EpochScoring(
metrics.f1_score,
lower_is_better=False,
on_train=False,
name="valid_f1"
))
]
def start():
# df = pd.read_csv("data64.csv") # use this line
df = pd.read_csv("data64random.csv")
X = df["Sequence"]
y = df["class"]
npa = np.array([y.values])
torch_tensor = torch.tensor(npa) # [0, 1, 1, 0, ... ... ] a simple list
print(f"torch_tensor: {torch_tensor}")
# need to transpose it!
yt = torch.transpose(torch_tensor, 0, 1)
ds = CustomDataset(df)
loader = DataLoader(ds, shuffle=True)
# train_loader = loader
# test_loader = loader # todo: load another dataset later
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = CNN1D().to(device)
m_criterion = nn.BCEWithLogitsLoss
# optimizer = optim.Adam(model.parameters(), lr=0.001)
m_optimizer = optim.Adam
net = NeuralNetClassifier(
model,
max_epochs=200,
criterion=m_criterion,
optimizer=m_optimizer,
lr=0.01,
# decay=0.01,
# momentum=0.9,
device=device,
classes=["no_mqtl", "yes_mqtl"],
verbose=True,
callbacks=get_callbacks()
)
ohe_c = one_hot_e_column(X)
print(f"ohe_c shape {ohe_c.shape}")
ohe_c = torch.Tensor(ohe_c)
ohe_c = ohe_c.permute(0, 2, 1)
ohe_c = ohe_c.to(device)
print(f"ohe_c shape {ohe_c.shape}")
net.fit(X=ohe_c, y=yt)
y_proba = net.predict_proba(ohe_c)
# timber.info(f"y_proba = {y_proba}")
pass
if __name__ == '__main__':
start()
# test_dataloader()
pass
</code>
<code>import logging import torch import torch.nn as nn import torch.optim as optim import pandas as pd from sklearn import metrics from skorch import NeuralNetClassifier from skorch.callbacks import EpochScoring from torch.utils.data import DataLoader, Dataset import numpy as np import constants timber = logging.getLogger() logging.basicConfig(level=logging.INFO) # change to level=logging.DEBUG to print more logs... # utils def one_hot_e(dna_seq: str) -> np.ndarray: mydict = {'A': np.asarray([1.0, 0.0, 0.0, 0.0]), 'C': np.asarray([0.0, 1.0, 0.0, 0.0]), 'G': np.asarray([0.0, 0.0, 1.0, 0.0]), 'T': np.asarray([0.0, 0.0, 0.0, 1.0]), 'N': np.asarray([0.0, 0.0, 0.0, 0.0]), 'H': np.asarray([0.0, 0.0, 0.0, 0.0]), 'a': np.asarray([1.0, 0.0, 0.0, 0.0]), 'c': np.asarray([0.0, 1.0, 0.0, 0.0]), 'g': np.asarray([0.0, 0.0, 1.0, 0.0]), 't': np.asarray([0.0, 0.0, 0.0, 1.0]), 'n': np.asarray([0.0, 0.0, 0.0, 0.0]), '-': np.asarray([0.0, 0.0, 0.0, 0.0])} size_of_a_seq: int = len(dna_seq) # forward = np.zeros(shape=(size_of_a_seq, 4)) forward_list: list = [mydict[dna_seq[i]] for i in range(0, size_of_a_seq)] encoded = np.asarray(forward_list) return encoded def one_hot_e_column(column: pd.Series) -> np.ndarray: tmp_list: list = [one_hot_e(seq) for seq in column] encoded_column = np.asarray(tmp_list) return encoded_column def reverse_dna_seq(dna_seq: str) -> str: # m_reversed = "" # for i in range(0, len(dna_seq)): # m_reversed = dna_seq[i] + m_reversed # return m_reversed return dna_seq[::-1] def complement_dna_seq(dna_seq: str) -> str: comp_map = {"A": "T", "C": "G", "T": "A", "G": "C", "a": "t", "c": "g", "t": "a", "g": "c", "N": "N", "H": "H", "-": "-", "n": "n", "h": "h" } comp_dna_seq_list: list = [comp_map[nucleotide] for nucleotide in dna_seq] comp_dna_seq: str = "".join(comp_dna_seq_list) return comp_dna_seq def reverse_complement_dna_seq(dna_seq: str) -> str: return reverse_dna_seq(complement_dna_seq(dna_seq)) def reverse_complement_dna_seqs(column: pd.Series) -> pd.Series: tmp_list: list = [reverse_complement_dna_seq(seq) for seq in column] rc_column = pd.Series(tmp_list) return rc_column class CNN1D(nn.Module): def __init__(self, in_channel_num_of_nucleotides=4, kernel_size_k_mer_motif=4, dnn_size=256, num_filters=1, lstm_hidden_size=128, *args, **kwargs): super().__init__(*args, **kwargs) self.conv1d = nn.Conv1d(in_channels=in_channel_num_of_nucleotides, out_channels=num_filters, kernel_size=kernel_size_k_mer_motif, stride=2) self.activation = nn.ReLU() self.pooling = nn.MaxPool1d(kernel_size=kernel_size_k_mer_motif, stride=2) self.flatten = nn.Flatten() # linear layer self.dnn2 = nn.Linear(in_features=14 * num_filters, out_features=dnn_size) self.act2 = nn.Sigmoid() self.dropout2 = nn.Dropout(p=0.2) self.out = nn.Linear(in_features=dnn_size, out_features=1) self.out_act = nn.Sigmoid() pass def forward(self, x): timber.debug(constants.magenta + f"h0: {x}") h = self.conv1d(x) timber.debug(constants.green + f"h1: {h}") h = self.activation(h) timber.debug(constants.magenta + f"h2: {h}") h = self.pooling(h) timber.debug(constants.blue + f"h3: {h}") timber.debug(constants.cyan + f"h4: {h}") h = self.flatten(h) timber.debug(constants.magenta + f"h5: {h},n shape {h.shape}, size {h.size}") h = self.dnn2(h) timber.debug(constants.green + f"h6: {h}") h = self.act2(h) timber.debug(constants.blue + f"h7: {h}") h = self.dropout2(h) timber.debug(constants.cyan + f"h8: {h}") h = self.out(h) timber.debug(constants.magenta + f"h9: {h}") h = self.out_act(h) timber.debug(constants.green + f"h10: {h}") # h = (h > 0.5).float() # <---- should this go here? # timber.debug(constants.green + f"h11: {h}") return h class CustomDataset(Dataset): def __init__(self, dataframe): self.x = dataframe["Sequence"] self.y = dataframe["class"] def __len__(self): return len(self.y) def preprocessing(self, x1, y1) -> (torch.Tensor, torch.Tensor, torch.Tensor): forward_col = x1 backward_col = reverse_complement_dna_seqs(forward_col) forward_one_hot_e_col: np.ndarray = one_hot_e_column(forward_col) backward_one_hot_e_col: np.ndarray = one_hot_e_column(backward_col) tr_xf_tensor = torch.Tensor(forward_one_hot_e_col).permute(1, 2, 0) tr_xb_tensor = torch.Tensor(backward_one_hot_e_col).permute(1, 2, 0) # timber.debug(f"y1 {y1}") tr_y1 = np.array([y1]) # <--- need to put it inside brackets return tr_xf_tensor, tr_xb_tensor, tr_y1 def __getitem__(self, idx): m_seq = self.x.iloc[idx] labels = self.y.iloc[idx] xf, xb, y = self.preprocessing(m_seq, labels) timber.debug(f"xf -> {xf.shape}, xb -> {xb.shape}, y -> {y}") return xf, xb, y def test_dataloader(): df = pd.read_csv("todo.csv") X = df["Sequence"] y = df["class"] ds = CustomDataset(df) loader = DataLoader(ds, shuffle=True, batch_size=16) train_loader = loader for data in train_loader: timber.debug(data) # xf, xb, y = data[0], data[1], data[2] # timber.debug(f"xf -> {xf.shape}, xb -> {xb.shape}, y -> {y.shape}") pass def get_callbacks() -> list: # metric.auc ( uses trapezoidal rule) gave an error: x is neither increasing, nor decreasing. so I had to remove it return [ ("tr_acc", EpochScoring( metrics.accuracy_score, lower_is_better=False, on_train=True, name="train_acc", )), ("tr_recall", EpochScoring( metrics.recall_score, lower_is_better=False, on_train=True, name="train_recall", )), ("tr_precision", EpochScoring( metrics.precision_score, lower_is_better=False, on_train=True, name="train_precision", )), ("tr_roc_auc", EpochScoring( metrics.roc_auc_score, lower_is_better=False, on_train=False, name="tr_auc" )), ("tr_f1", EpochScoring( metrics.f1_score, lower_is_better=False, on_train=False, name="tr_f1" )), # ("valid_acc1", EpochScoring( # metrics.accuracy_score, # lower_is_better=False, # on_train=False, # name="valid_acc1", # )), ("valid_recall", EpochScoring( metrics.recall_score, lower_is_better=False, on_train=False, name="valid_recall", )), ("valid_precision", EpochScoring( metrics.precision_score, lower_is_better=False, on_train=False, name="valid_precision", )), ("valid_roc_auc", EpochScoring( metrics.roc_auc_score, lower_is_better=False, on_train=False, name="valid_auc" )), ("valid_f1", EpochScoring( metrics.f1_score, lower_is_better=False, on_train=False, name="valid_f1" )) ] def start(): # df = pd.read_csv("data64.csv") # use this line df = pd.read_csv("data64random.csv") X = df["Sequence"] y = df["class"] npa = np.array([y.values]) torch_tensor = torch.tensor(npa) # [0, 1, 1, 0, ... ... ] a simple list print(f"torch_tensor: {torch_tensor}") # need to transpose it! yt = torch.transpose(torch_tensor, 0, 1) ds = CustomDataset(df) loader = DataLoader(ds, shuffle=True) # train_loader = loader # test_loader = loader # todo: load another dataset later device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = CNN1D().to(device) m_criterion = nn.BCEWithLogitsLoss # optimizer = optim.Adam(model.parameters(), lr=0.001) m_optimizer = optim.Adam net = NeuralNetClassifier( model, max_epochs=200, criterion=m_criterion, optimizer=m_optimizer, lr=0.01, # decay=0.01, # momentum=0.9, device=device, classes=["no_mqtl", "yes_mqtl"], verbose=True, callbacks=get_callbacks() ) ohe_c = one_hot_e_column(X) print(f"ohe_c shape {ohe_c.shape}") ohe_c = torch.Tensor(ohe_c) ohe_c = ohe_c.permute(0, 2, 1) ohe_c = ohe_c.to(device) print(f"ohe_c shape {ohe_c.shape}") net.fit(X=ohe_c, y=yt) y_proba = net.predict_proba(ohe_c) # timber.info(f"y_proba = {y_proba}") pass if __name__ == '__main__': start() # test_dataloader() pass </code>
import logging

import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
from sklearn import metrics
from skorch import NeuralNetClassifier
from skorch.callbacks import EpochScoring
from torch.utils.data import DataLoader, Dataset
import numpy as np

import constants

timber = logging.getLogger()
logging.basicConfig(level=logging.INFO)  # change to level=logging.DEBUG to print more logs...


# utils

def one_hot_e(dna_seq: str) -> np.ndarray:
  mydict = {'A': np.asarray([1.0, 0.0, 0.0, 0.0]), 'C': np.asarray([0.0, 1.0, 0.0, 0.0]),
            'G': np.asarray([0.0, 0.0, 1.0, 0.0]), 'T': np.asarray([0.0, 0.0, 0.0, 1.0]),
            'N': np.asarray([0.0, 0.0, 0.0, 0.0]), 'H': np.asarray([0.0, 0.0, 0.0, 0.0]),
            'a': np.asarray([1.0, 0.0, 0.0, 0.0]), 'c': np.asarray([0.0, 1.0, 0.0, 0.0]),
            'g': np.asarray([0.0, 0.0, 1.0, 0.0]), 't': np.asarray([0.0, 0.0, 0.0, 1.0]),
            'n': np.asarray([0.0, 0.0, 0.0, 0.0]), '-': np.asarray([0.0, 0.0, 0.0, 0.0])}

  size_of_a_seq: int = len(dna_seq)

  # forward = np.zeros(shape=(size_of_a_seq, 4))

  forward_list: list = [mydict[dna_seq[i]] for i in range(0, size_of_a_seq)]
  encoded = np.asarray(forward_list)
  return encoded


def one_hot_e_column(column: pd.Series) -> np.ndarray:
  tmp_list: list = [one_hot_e(seq) for seq in column]
  encoded_column = np.asarray(tmp_list)
  return encoded_column


def reverse_dna_seq(dna_seq: str) -> str:
  # m_reversed = ""
  # for i in range(0, len(dna_seq)):
  #     m_reversed = dna_seq[i] + m_reversed
  # return m_reversed
  return dna_seq[::-1]


def complement_dna_seq(dna_seq: str) -> str:
  comp_map = {"A": "T", "C": "G", "T": "A", "G": "C",
              "a": "t", "c": "g", "t": "a", "g": "c",
              "N": "N", "H": "H", "-": "-",
              "n": "n", "h": "h"
              }

  comp_dna_seq_list: list = [comp_map[nucleotide] for nucleotide in dna_seq]
  comp_dna_seq: str = "".join(comp_dna_seq_list)
  return comp_dna_seq


def reverse_complement_dna_seq(dna_seq: str) -> str:
  return reverse_dna_seq(complement_dna_seq(dna_seq))


def reverse_complement_dna_seqs(column: pd.Series) -> pd.Series:
  tmp_list: list = [reverse_complement_dna_seq(seq) for seq in column]
  rc_column = pd.Series(tmp_list)
  return rc_column


class CNN1D(nn.Module):
  def __init__(self,
               in_channel_num_of_nucleotides=4,
               kernel_size_k_mer_motif=4,
               dnn_size=256,
               num_filters=1,
               lstm_hidden_size=128,
               *args, **kwargs):
    super().__init__(*args, **kwargs)
    self.conv1d = nn.Conv1d(in_channels=in_channel_num_of_nucleotides, out_channels=num_filters,
                            kernel_size=kernel_size_k_mer_motif, stride=2)
    self.activation = nn.ReLU()
    self.pooling = nn.MaxPool1d(kernel_size=kernel_size_k_mer_motif, stride=2)

    self.flatten = nn.Flatten()
    # linear layer

    self.dnn2 = nn.Linear(in_features=14 * num_filters, out_features=dnn_size)
    self.act2 = nn.Sigmoid()
    self.dropout2 = nn.Dropout(p=0.2)

    self.out = nn.Linear(in_features=dnn_size, out_features=1)
    self.out_act = nn.Sigmoid()

    pass

  def forward(self, x):
    timber.debug(constants.magenta + f"h0: {x}")
    h = self.conv1d(x)
    timber.debug(constants.green + f"h1: {h}")
    h = self.activation(h)
    timber.debug(constants.magenta + f"h2: {h}")
    h = self.pooling(h)
    timber.debug(constants.blue + f"h3: {h}")
    timber.debug(constants.cyan + f"h4: {h}")

    h = self.flatten(h)
    timber.debug(constants.magenta + f"h5: {h},n shape {h.shape}, size {h.size}")
    h = self.dnn2(h)
    timber.debug(constants.green + f"h6: {h}")

    h = self.act2(h)
    timber.debug(constants.blue + f"h7: {h}")

    h = self.dropout2(h)
    timber.debug(constants.cyan + f"h8: {h}")

    h = self.out(h)
    timber.debug(constants.magenta + f"h9: {h}")

    h = self.out_act(h)
    timber.debug(constants.green + f"h10: {h}")
    # h = (h > 0.5).float()  # <---- should this go here?
    # timber.debug(constants.green + f"h11: {h}")

    return h


class CustomDataset(Dataset):
  def __init__(self, dataframe):
    self.x = dataframe["Sequence"]
    self.y = dataframe["class"]

  def __len__(self):
    return len(self.y)

  def preprocessing(self, x1, y1) -> (torch.Tensor, torch.Tensor, torch.Tensor):
    forward_col = x1

    backward_col = reverse_complement_dna_seqs(forward_col)

    forward_one_hot_e_col: np.ndarray = one_hot_e_column(forward_col)
    backward_one_hot_e_col: np.ndarray = one_hot_e_column(backward_col)

    tr_xf_tensor = torch.Tensor(forward_one_hot_e_col).permute(1, 2, 0)
    tr_xb_tensor = torch.Tensor(backward_one_hot_e_col).permute(1, 2, 0)
    # timber.debug(f"y1 {y1}")
    tr_y1 = np.array([y1])  # <--- need to put it inside brackets

    return tr_xf_tensor, tr_xb_tensor, tr_y1

  def __getitem__(self, idx):
    m_seq = self.x.iloc[idx]
    labels = self.y.iloc[idx]
    xf, xb, y = self.preprocessing(m_seq, labels)
    timber.debug(f"xf -> {xf.shape}, xb -> {xb.shape}, y -> {y}")
    return xf, xb, y


def test_dataloader():
  df = pd.read_csv("todo.csv")
  X = df["Sequence"]
  y = df["class"]

  ds = CustomDataset(df)
  loader = DataLoader(ds, shuffle=True, batch_size=16)

  train_loader = loader

  for data in train_loader:
    timber.debug(data)
    # xf, xb, y = data[0], data[1], data[2]
    # timber.debug(f"xf -> {xf.shape}, xb -> {xb.shape}, y -> {y.shape}")
  pass


def get_callbacks() -> list:
  # metric.auc ( uses trapezoidal rule) gave an error: x is neither increasing, nor decreasing. so I had to remove it
  return [
    ("tr_acc", EpochScoring(
      metrics.accuracy_score,
      lower_is_better=False,
      on_train=True,
      name="train_acc",
    )),

    ("tr_recall", EpochScoring(
      metrics.recall_score,
      lower_is_better=False,
      on_train=True,
      name="train_recall",
    )),
    ("tr_precision", EpochScoring(
      metrics.precision_score,
      lower_is_better=False,
      on_train=True,
      name="train_precision",
    )),
    ("tr_roc_auc", EpochScoring(
      metrics.roc_auc_score,
      lower_is_better=False,
      on_train=False,
      name="tr_auc"
    )),
    ("tr_f1", EpochScoring(
      metrics.f1_score,
      lower_is_better=False,
      on_train=False,
      name="tr_f1"
    )),
    # ("valid_acc1", EpochScoring(
    #   metrics.accuracy_score,
    #   lower_is_better=False,
    #   on_train=False,
    #   name="valid_acc1",
    # )),
    ("valid_recall", EpochScoring(
      metrics.recall_score,
      lower_is_better=False,
      on_train=False,
      name="valid_recall",
    )),
    ("valid_precision", EpochScoring(
      metrics.precision_score,
      lower_is_better=False,
      on_train=False,
      name="valid_precision",
    )),
    ("valid_roc_auc", EpochScoring(
      metrics.roc_auc_score,
      lower_is_better=False,
      on_train=False,
      name="valid_auc"
    )),
    ("valid_f1", EpochScoring(
      metrics.f1_score,
      lower_is_better=False,
      on_train=False,
      name="valid_f1"
    ))
  ]


def start():

  # df = pd.read_csv("data64.csv")  # use this line
  df = pd.read_csv("data64random.csv")
  X = df["Sequence"]
  y = df["class"]

  npa = np.array([y.values])

  torch_tensor = torch.tensor(npa)  # [0, 1, 1, 0, ... ... ] a simple list
  print(f"torch_tensor: {torch_tensor}")
  # need to transpose it!

  yt = torch.transpose(torch_tensor, 0, 1)

  ds = CustomDataset(df)
  loader = DataLoader(ds, shuffle=True)

  # train_loader = loader
  # test_loader = loader  # todo: load another dataset later

  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  model = CNN1D().to(device)
  m_criterion = nn.BCEWithLogitsLoss
  # optimizer = optim.Adam(model.parameters(), lr=0.001)
  m_optimizer = optim.Adam

  net = NeuralNetClassifier(
    model,
    max_epochs=200,
    criterion=m_criterion,
    optimizer=m_optimizer,
    lr=0.01,
    # decay=0.01,
    # momentum=0.9,

    device=device,
    classes=["no_mqtl", "yes_mqtl"],
    verbose=True,
    callbacks=get_callbacks()
  )

  ohe_c = one_hot_e_column(X)
  print(f"ohe_c shape {ohe_c.shape}")
  ohe_c = torch.Tensor(ohe_c)
  ohe_c = ohe_c.permute(0, 2, 1)
  ohe_c = ohe_c.to(device)
  print(f"ohe_c shape {ohe_c.shape}")

  net.fit(X=ohe_c, y=yt)
  y_proba = net.predict_proba(ohe_c)
  # timber.info(f"y_proba = {y_proba}")
  pass


if __name__ == '__main__':
  start()
  # test_dataloader()
  pass

And you can find the 2 datasets

  1. dna64random.csv (model doesn’t work with this)
  2. dna64.csv (model works with it)

You can quickly download all using this gist link

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật