How to improve lemma performance and reduce resource usage?

I have the following lemma which feels fairly straightforward but it takes quite a while and a good amount of resources to verify. I don’t think it should take so long but it isn’t immediately obvious to me how to improve the performance. I’ve removed as many assertions that were unneeded but it still uses about 27M and still takes a couple of seconds to verify. According to the Dafny blog we should shoot for under 1M of resources.

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code> lemma {:induction false} msorted_equal(xs: seq<int>, ys: seq<int>)
requires sortedRec(xs)
requires multiset(xs) == multiset(ys)
decreases xs
ensures xs == msort_bu(ys)
{
if xs == [] {
} else {
assert ys != [];
assert xs == [xs[0]] + xs[1..];
assert ys == [ys[0]] + ys[1..];
assert xs[0] == msort_bu(ys)[0] by {
assert forall x :: x in xs ==> x in multiset(xs) && x in multiset(ys) && x in ys;
assert forall y :: y in ys ==> y in multiset(ys) && y in multiset(xs) && y in xs && y in msort_bu(ys);
assert forall yy :: yy in msort_bu(ys)[1..] ==> msort_bu(ys)[0] <= yy;
assert forall xx :: xx in xs ==> xs[0] <= xx;
if xs[0] != msort_bu(ys)[0] {
if xs[0] < ys[0] {
assert xs[0] in msort_bu(ys)[1..];
} else {
assert ys[0] in xs[1..];
}
assert false;
}
}
assert msort_bu(ys)[0] in multiset(msort_bu(ys)) && msort_bu(ys)[0] in ys;
var ys1 := subtractOneFromList(ys, msort_bu(ys)[0]);
subtractOneFromListLemma(ys, msort_bu(ys)[0]);
assert multiset(xs) == multiset([xs[0]]) + multiset(xs[1..]);
assert multiset(xs) == multiset(xs[1..]) + multiset{msort_bu(ys)[0]};
assert multiset(xs[1..]) == multiset(ys1);
assert msort_bu(ys) == [msort_bu(ys)[0]] + msort_bu(ys)[1..];
assert multiset(ys1) == multiset(msort_bu(ys)[1..]) by {
// assert multiset(msort_bu(ys)) == multiset{msort_bu(ys)[0]} + multiset(msort_bu(ys)[1..]);
assert multiset(msort_bu(ys)) - multiset{msort_bu(ys)[0]} == multiset(msort_bu(ys)[1..]);
assert multiset(ys) - multiset{msort_bu(ys)[0]} == multiset(msort_bu(ys)[1..]);
assert multiset(ys1) == multiset(ys) - multiset{msort_bu(ys)[0]};
// assert multiset(ys) == multiset(ys1) + multiset{msort_bu(ys)[0]};
}
msorted_equal(xs[1..], ys1);
assert xs[1..] == msort_bu(ys1);
multisetsEqualSortedAreEqual(msort_bu(ys1), msort_bu(ys)[1..]);
assert msort_bu(ys) == [msort_bu(ys)[0]] + msort_bu(ys1);
assert xs == msort_bu(ys);
}
}
</code>
<code> lemma {:induction false} msorted_equal(xs: seq<int>, ys: seq<int>) requires sortedRec(xs) requires multiset(xs) == multiset(ys) decreases xs ensures xs == msort_bu(ys) { if xs == [] { } else { assert ys != []; assert xs == [xs[0]] + xs[1..]; assert ys == [ys[0]] + ys[1..]; assert xs[0] == msort_bu(ys)[0] by { assert forall x :: x in xs ==> x in multiset(xs) && x in multiset(ys) && x in ys; assert forall y :: y in ys ==> y in multiset(ys) && y in multiset(xs) && y in xs && y in msort_bu(ys); assert forall yy :: yy in msort_bu(ys)[1..] ==> msort_bu(ys)[0] <= yy; assert forall xx :: xx in xs ==> xs[0] <= xx; if xs[0] != msort_bu(ys)[0] { if xs[0] < ys[0] { assert xs[0] in msort_bu(ys)[1..]; } else { assert ys[0] in xs[1..]; } assert false; } } assert msort_bu(ys)[0] in multiset(msort_bu(ys)) && msort_bu(ys)[0] in ys; var ys1 := subtractOneFromList(ys, msort_bu(ys)[0]); subtractOneFromListLemma(ys, msort_bu(ys)[0]); assert multiset(xs) == multiset([xs[0]]) + multiset(xs[1..]); assert multiset(xs) == multiset(xs[1..]) + multiset{msort_bu(ys)[0]}; assert multiset(xs[1..]) == multiset(ys1); assert msort_bu(ys) == [msort_bu(ys)[0]] + msort_bu(ys)[1..]; assert multiset(ys1) == multiset(msort_bu(ys)[1..]) by { // assert multiset(msort_bu(ys)) == multiset{msort_bu(ys)[0]} + multiset(msort_bu(ys)[1..]); assert multiset(msort_bu(ys)) - multiset{msort_bu(ys)[0]} == multiset(msort_bu(ys)[1..]); assert multiset(ys) - multiset{msort_bu(ys)[0]} == multiset(msort_bu(ys)[1..]); assert multiset(ys1) == multiset(ys) - multiset{msort_bu(ys)[0]}; // assert multiset(ys) == multiset(ys1) + multiset{msort_bu(ys)[0]}; } msorted_equal(xs[1..], ys1); assert xs[1..] == msort_bu(ys1); multisetsEqualSortedAreEqual(msort_bu(ys1), msort_bu(ys)[1..]); assert msort_bu(ys) == [msort_bu(ys)[0]] + msort_bu(ys1); assert xs == msort_bu(ys); } } </code>
    lemma {:induction false} msorted_equal(xs: seq<int>, ys: seq<int>)
        requires sortedRec(xs)
        requires multiset(xs) == multiset(ys)
        decreases xs
        ensures xs == msort_bu(ys)
    {
        if xs == [] {
        } else {
            assert ys != [];
            assert xs == [xs[0]] + xs[1..];
            assert ys == [ys[0]] + ys[1..];
            assert xs[0] == msort_bu(ys)[0] by {
                assert forall x :: x in xs ==> x in multiset(xs) && x in multiset(ys) && x in ys;
                assert forall y :: y in ys ==> y in multiset(ys) && y in multiset(xs) && y in xs && y in msort_bu(ys);
                assert forall yy :: yy in msort_bu(ys)[1..] ==> msort_bu(ys)[0] <= yy;
                assert forall xx :: xx in xs ==> xs[0] <= xx;
                if xs[0] != msort_bu(ys)[0] {
                    if xs[0] < ys[0] {
                        assert xs[0] in msort_bu(ys)[1..];
                    } else {
                        assert ys[0] in xs[1..];
                    }
                    assert false;
                }

            }
            assert msort_bu(ys)[0] in multiset(msort_bu(ys)) && msort_bu(ys)[0] in ys;
            var ys1 := subtractOneFromList(ys, msort_bu(ys)[0]);
            subtractOneFromListLemma(ys, msort_bu(ys)[0]);
            assert multiset(xs) == multiset([xs[0]]) + multiset(xs[1..]);
            assert multiset(xs) == multiset(xs[1..]) + multiset{msort_bu(ys)[0]};
            assert multiset(xs[1..]) == multiset(ys1);
            assert msort_bu(ys) == [msort_bu(ys)[0]] + msort_bu(ys)[1..];
            assert multiset(ys1) == multiset(msort_bu(ys)[1..]) by {
                // assert multiset(msort_bu(ys)) == multiset{msort_bu(ys)[0]} + multiset(msort_bu(ys)[1..]);
                assert multiset(msort_bu(ys)) - multiset{msort_bu(ys)[0]} == multiset(msort_bu(ys)[1..]);
                assert multiset(ys) - multiset{msort_bu(ys)[0]} == multiset(msort_bu(ys)[1..]);
                assert multiset(ys1) == multiset(ys) - multiset{msort_bu(ys)[0]};
                // assert multiset(ys) == multiset(ys1) + multiset{msort_bu(ys)[0]};
            }
            msorted_equal(xs[1..], ys1);
            assert xs[1..] == msort_bu(ys1);
            multisetsEqualSortedAreEqual(msort_bu(ys1), msort_bu(ys)[1..]);
            assert msort_bu(ys) == [msort_bu(ys)[0]] + msort_bu(ys1);
            assert xs == msort_bu(ys);
        }
    }

Edit: With the following changes I was able to get it to 1.28M RU but still isn’t under 1M. It’s unclear to me why keeping assertions which should be equivalent to function or lemma post conditions sometimes reduces the usage when it seems like those should already be established facts from making those calls.

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code> lemma {:induction false} msorted_equal(xs: seq<int>, ys: seq<int>)
requires sortedRec(xs)
requires multiset(xs) == multiset(ys)
decreases xs
ensures xs == msort_bu(ys)
{
if xs == [] {
} else {
assert ys != [];
assert xs == [xs[0]] + xs[1..];
assert ys == [ys[0]] + ys[1..];
assert xs[0] == msort_bu(ys)[0] by {
assert xs[0] in multiset(xs) && xs[0] in multiset(ys) && xs[0] in msort_bu(ys);
assert msort_bu(ys)[0] in multiset(msort_bu(ys)) && msort_bu(ys)[0] in multiset(ys) && msort_bu(ys)[0] in xs;
if xs[0] != msort_bu(ys)[0] {
if xs[0] < msort_bu(ys)[0] {
assert xs[0] in msort_bu(ys)[1..];
} else {
assert msort_bu(ys)[0] in xs[1..];
}
assert false;
}
}
var ys1 := subtractOneFromList(ys, msort_bu(ys)[0]);
subtractOneFromListLemma(ys, msort_bu(ys)[0]);
calc {
multiset(xs);
multiset([xs[0]]) + multiset(xs[1..]);
multiset{msort_bu(ys)[0]} + multiset(xs[1..]);
}
assert msort_bu(ys) == [msort_bu(ys)[0]] + msort_bu(ys)[1..];
calc {
multiset(xs[1..]);
multiset(ys1);
{
assert multiset(msort_bu(ys)) - multiset{msort_bu(ys)[0]} == multiset(msort_bu(ys)[1..]);
assert multiset(ys) - multiset{msort_bu(ys)[0]} == multiset(msort_bu(ys)[1..]);
assert multiset(ys1) == multiset(ys) - multiset{msort_bu(ys)[0]};
}
multiset(msort_bu(ys)[1..]);
}
msorted_equal(xs[1..], ys1);
assert xs[1..] == msort_bu(ys1);
multisetsEqualSortedAreEqual(msort_bu(ys1), msort_bu(ys)[1..]);
assert xs == msort_bu(ys);
}
}
</code>
<code> lemma {:induction false} msorted_equal(xs: seq<int>, ys: seq<int>) requires sortedRec(xs) requires multiset(xs) == multiset(ys) decreases xs ensures xs == msort_bu(ys) { if xs == [] { } else { assert ys != []; assert xs == [xs[0]] + xs[1..]; assert ys == [ys[0]] + ys[1..]; assert xs[0] == msort_bu(ys)[0] by { assert xs[0] in multiset(xs) && xs[0] in multiset(ys) && xs[0] in msort_bu(ys); assert msort_bu(ys)[0] in multiset(msort_bu(ys)) && msort_bu(ys)[0] in multiset(ys) && msort_bu(ys)[0] in xs; if xs[0] != msort_bu(ys)[0] { if xs[0] < msort_bu(ys)[0] { assert xs[0] in msort_bu(ys)[1..]; } else { assert msort_bu(ys)[0] in xs[1..]; } assert false; } } var ys1 := subtractOneFromList(ys, msort_bu(ys)[0]); subtractOneFromListLemma(ys, msort_bu(ys)[0]); calc { multiset(xs); multiset([xs[0]]) + multiset(xs[1..]); multiset{msort_bu(ys)[0]} + multiset(xs[1..]); } assert msort_bu(ys) == [msort_bu(ys)[0]] + msort_bu(ys)[1..]; calc { multiset(xs[1..]); multiset(ys1); { assert multiset(msort_bu(ys)) - multiset{msort_bu(ys)[0]} == multiset(msort_bu(ys)[1..]); assert multiset(ys) - multiset{msort_bu(ys)[0]} == multiset(msort_bu(ys)[1..]); assert multiset(ys1) == multiset(ys) - multiset{msort_bu(ys)[0]}; } multiset(msort_bu(ys)[1..]); } msorted_equal(xs[1..], ys1); assert xs[1..] == msort_bu(ys1); multisetsEqualSortedAreEqual(msort_bu(ys1), msort_bu(ys)[1..]); assert xs == msort_bu(ys); } } </code>
    lemma {:induction false} msorted_equal(xs: seq<int>, ys: seq<int>)
        requires sortedRec(xs)
        requires multiset(xs) == multiset(ys)
        decreases xs
        ensures xs == msort_bu(ys)
    {
        if xs == [] {
        } else {
            assert ys != [];
            assert xs == [xs[0]] + xs[1..];
            assert ys == [ys[0]] + ys[1..];
            assert xs[0] == msort_bu(ys)[0] by {
                assert xs[0] in multiset(xs) && xs[0] in multiset(ys) && xs[0] in msort_bu(ys);
                assert msort_bu(ys)[0] in multiset(msort_bu(ys)) && msort_bu(ys)[0] in multiset(ys) && msort_bu(ys)[0] in xs;
                if xs[0] != msort_bu(ys)[0] {
                    if xs[0] < msort_bu(ys)[0] {
                        assert xs[0] in msort_bu(ys)[1..];
                    } else {
                        assert msort_bu(ys)[0] in xs[1..];
                    }
                    assert false;
                }
            }
            var ys1 := subtractOneFromList(ys, msort_bu(ys)[0]);
            subtractOneFromListLemma(ys, msort_bu(ys)[0]);
            calc {
                multiset(xs);
                multiset([xs[0]]) + multiset(xs[1..]);
                multiset{msort_bu(ys)[0]} + multiset(xs[1..]);
            }
            assert msort_bu(ys) == [msort_bu(ys)[0]] + msort_bu(ys)[1..];
            calc {
                multiset(xs[1..]);
                multiset(ys1);
                {
                    assert multiset(msort_bu(ys)) - multiset{msort_bu(ys)[0]} == multiset(msort_bu(ys)[1..]);
                    assert multiset(ys) - multiset{msort_bu(ys)[0]} == multiset(msort_bu(ys)[1..]);
                    assert multiset(ys1) == multiset(ys) - multiset{msort_bu(ys)[0]};
                }
                multiset(msort_bu(ys)[1..]);
            }
            msorted_equal(xs[1..], ys1);
            assert xs[1..] == msort_bu(ys1);
            multisetsEqualSortedAreEqual(msort_bu(ys1), msort_bu(ys)[1..]);
            assert xs == msort_bu(ys);
        }
    }

Here are the rest of the definitions.

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code> predicate sortedRec(list: seq<int>) {
if list == [] then true else (forall y :: y in list[1..] ==> list[0] <= y) && sortedRec(list[1..])
}
function merge(xs: seq<int>, ys: seq<int>): seq<int>
requires sortedRec(xs)
requires sortedRec(ys)
ensures sortedRec(merge(xs, ys))
ensures multiset(merge(xs,ys)) == multiset(xs)+multiset(ys)
{
if xs == [] then ys else
if ys == [] then xs else
if xs[0] <= ys[0] then
assert xs == [xs[0]] + xs[1..];
assert ys == [ys[0]] + ys[1..];
assert forall x :: x in merge(xs[1..], ys) ==> x in xs[1..] || x in ys ==> xs[0] <= x;
// assert sortedRec(merge(xs[1..], ys));
var result := [xs[0]] + merge(xs[1..], ys);
assert forall x :: x in result[1..] ==> x in multiset(xs[1..])+multiset(ys);
result
else
assert xs == [xs[0]] + xs[1..];
assert ys == [ys[0]] + ys[1..];
assert forall x :: x in merge(xs, ys[1..]) ==> x in xs || x in ys[1..] ==> ys[0] <= x;
var result := [ys[0]] + merge(xs, ys[1..]);
assert forall x :: x in result[1..] ==>x in multiset(xs) + multiset(ys[1..]);
result
}
function mset_mset(xss: seq<seq<int>>): multiset<int>
ensures forall xs :: xs in xss ==> forall x :: x in xs ==> x in mset_mset(xss)
{
if xss == [] then multiset{} else
assert xss == [xss[0]] + xss[1..];
multiset(xss[0]) + mset_mset(xss[1..])
}
function {:verify true} merge_adj(xss: seq<seq<int>>): seq<seq<int>>
requires forall xs :: xs in xss ==> sortedRec(xs)
ensures |merge_adj(xss)| == (|xss| + 1)/2
ensures mset_mset(xss) == mset_mset(merge_adj(xss))
ensures forall xs :: xs in merge_adj(xss) ==> sortedRec(xs)
{
if xss == [] then []
else if |xss| == 1 then xss
else [merge(xss[0], xss[1])] + merge_adj(xss[2..])
}
function {:verify true} merge_all(xss: seq<seq<int>>): seq<int>
requires forall xs :: xs in xss ==> sortedRec(xs)
ensures sortedRec(merge_all(xss))
ensures multiset(merge_all(xss)) == mset_mset(xss)
decreases |xss|
{
if xss == [] then []
else if |xss| == 1 then xss[0]
else merge_all(merge_adj(xss))
}
function splitSeq(xs: seq<int>): seq<seq<int>>
ensures multiset(xs) == mset_mset(splitSeq(xs))
ensures forall ys :: ys in splitSeq(xs) ==> sortedRec(ys)
{
if xs == [] then [] else
assert xs == [xs[0]] + xs[1..];
[[xs[0]]] + splitSeq(xs[1..])
}
function {:verify true} msort_bu(xs: seq<int>): seq<int>
ensures multiset(xs) == multiset(msort_bu(xs))
ensures sortedRec(msort_bu(xs))
{
merge_all(splitSeq(xs))
}
function subtractOneFromList(xs: seq<int>, x: int): seq<int>
requires x in multiset(xs)
{
if xs[0] == x then
assert xs == [xs[0]] + xs[1..];
assert multiset(xs) == multiset([xs[0]]) + multiset(xs[1..]);
assert multiset(xs)-multiset{x} == multiset(xs[1..]);
xs[1..]
else
[xs[0]] + subtractOneFromList(xs[1..], x)
}
lemma subtractOneFromListLemma(xs: seq<int>, x: int)
requires x in multiset(xs)
ensures multiset(xs)-multiset{x} == multiset(subtractOneFromList(xs, x))
{
var retval := subtractOneFromList(xs, x);
var mset := multiset(xs);
if xs[0] == x {
assert xs == [xs[0]] + xs[1..];
assert mset == multiset([xs[0]]) + multiset(xs[1..]);
assert mset - multiset{x} == multiset(xs[1..]);
assert mset - multiset{x} == multiset(retval);
} else {
assert xs == [xs[0]] + xs[1..];
assert mset == multiset([xs[0]]) + multiset(xs[1..]);
}
}
lemma multisetsEqualSortedAreEqual(xs: seq<int>, ys: seq<int>)
requires multiset(xs) == multiset(ys)
requires sortedRec(xs)
requires sortedRec(ys)
ensures xs == ys
{
if xs == [] {
} else {
assert xs == [xs[0]] + xs[1..];
assert ys == [ys[0]] + ys[1..];
assert xs[0] == ys[0] by {
assert forall x :: x in xs ==> x in multiset(xs) && x in multiset(ys) && x in ys;
assert forall y :: y in ys ==> y in multiset(ys) && y in multiset(xs) && y in xs;
if xs[0] != ys[0] {
if xs[0] < ys[0] {
assert xs[0] in ys[1..];
assert ys[0] in xs;
assert false;
} else {
assert ys[0] < xs[0];
assert xs[0] in ys[1..];
assert ys[0] in xs;
assert false;
}
}
}
assert multiset(xs) == multiset(ys);
assert multiset(xs) == multiset([xs[0]]) + multiset(xs[1..]);
assert multiset(xs) == multiset{xs[0]} + multiset(xs[1..]);
assert multiset{xs[0]} + multiset(xs[1..]) - multiset{xs[0]} == multiset(xs[1..]);
assert multiset(ys) == multiset{xs[0]} + multiset(ys[1..]);
multisetsEqualSortedAreEqual(xs[1..], ys[1..]);
}
}
</code>
<code> predicate sortedRec(list: seq<int>) { if list == [] then true else (forall y :: y in list[1..] ==> list[0] <= y) && sortedRec(list[1..]) } function merge(xs: seq<int>, ys: seq<int>): seq<int> requires sortedRec(xs) requires sortedRec(ys) ensures sortedRec(merge(xs, ys)) ensures multiset(merge(xs,ys)) == multiset(xs)+multiset(ys) { if xs == [] then ys else if ys == [] then xs else if xs[0] <= ys[0] then assert xs == [xs[0]] + xs[1..]; assert ys == [ys[0]] + ys[1..]; assert forall x :: x in merge(xs[1..], ys) ==> x in xs[1..] || x in ys ==> xs[0] <= x; // assert sortedRec(merge(xs[1..], ys)); var result := [xs[0]] + merge(xs[1..], ys); assert forall x :: x in result[1..] ==> x in multiset(xs[1..])+multiset(ys); result else assert xs == [xs[0]] + xs[1..]; assert ys == [ys[0]] + ys[1..]; assert forall x :: x in merge(xs, ys[1..]) ==> x in xs || x in ys[1..] ==> ys[0] <= x; var result := [ys[0]] + merge(xs, ys[1..]); assert forall x :: x in result[1..] ==>x in multiset(xs) + multiset(ys[1..]); result } function mset_mset(xss: seq<seq<int>>): multiset<int> ensures forall xs :: xs in xss ==> forall x :: x in xs ==> x in mset_mset(xss) { if xss == [] then multiset{} else assert xss == [xss[0]] + xss[1..]; multiset(xss[0]) + mset_mset(xss[1..]) } function {:verify true} merge_adj(xss: seq<seq<int>>): seq<seq<int>> requires forall xs :: xs in xss ==> sortedRec(xs) ensures |merge_adj(xss)| == (|xss| + 1)/2 ensures mset_mset(xss) == mset_mset(merge_adj(xss)) ensures forall xs :: xs in merge_adj(xss) ==> sortedRec(xs) { if xss == [] then [] else if |xss| == 1 then xss else [merge(xss[0], xss[1])] + merge_adj(xss[2..]) } function {:verify true} merge_all(xss: seq<seq<int>>): seq<int> requires forall xs :: xs in xss ==> sortedRec(xs) ensures sortedRec(merge_all(xss)) ensures multiset(merge_all(xss)) == mset_mset(xss) decreases |xss| { if xss == [] then [] else if |xss| == 1 then xss[0] else merge_all(merge_adj(xss)) } function splitSeq(xs: seq<int>): seq<seq<int>> ensures multiset(xs) == mset_mset(splitSeq(xs)) ensures forall ys :: ys in splitSeq(xs) ==> sortedRec(ys) { if xs == [] then [] else assert xs == [xs[0]] + xs[1..]; [[xs[0]]] + splitSeq(xs[1..]) } function {:verify true} msort_bu(xs: seq<int>): seq<int> ensures multiset(xs) == multiset(msort_bu(xs)) ensures sortedRec(msort_bu(xs)) { merge_all(splitSeq(xs)) } function subtractOneFromList(xs: seq<int>, x: int): seq<int> requires x in multiset(xs) { if xs[0] == x then assert xs == [xs[0]] + xs[1..]; assert multiset(xs) == multiset([xs[0]]) + multiset(xs[1..]); assert multiset(xs)-multiset{x} == multiset(xs[1..]); xs[1..] else [xs[0]] + subtractOneFromList(xs[1..], x) } lemma subtractOneFromListLemma(xs: seq<int>, x: int) requires x in multiset(xs) ensures multiset(xs)-multiset{x} == multiset(subtractOneFromList(xs, x)) { var retval := subtractOneFromList(xs, x); var mset := multiset(xs); if xs[0] == x { assert xs == [xs[0]] + xs[1..]; assert mset == multiset([xs[0]]) + multiset(xs[1..]); assert mset - multiset{x} == multiset(xs[1..]); assert mset - multiset{x} == multiset(retval); } else { assert xs == [xs[0]] + xs[1..]; assert mset == multiset([xs[0]]) + multiset(xs[1..]); } } lemma multisetsEqualSortedAreEqual(xs: seq<int>, ys: seq<int>) requires multiset(xs) == multiset(ys) requires sortedRec(xs) requires sortedRec(ys) ensures xs == ys { if xs == [] { } else { assert xs == [xs[0]] + xs[1..]; assert ys == [ys[0]] + ys[1..]; assert xs[0] == ys[0] by { assert forall x :: x in xs ==> x in multiset(xs) && x in multiset(ys) && x in ys; assert forall y :: y in ys ==> y in multiset(ys) && y in multiset(xs) && y in xs; if xs[0] != ys[0] { if xs[0] < ys[0] { assert xs[0] in ys[1..]; assert ys[0] in xs; assert false; } else { assert ys[0] < xs[0]; assert xs[0] in ys[1..]; assert ys[0] in xs; assert false; } } } assert multiset(xs) == multiset(ys); assert multiset(xs) == multiset([xs[0]]) + multiset(xs[1..]); assert multiset(xs) == multiset{xs[0]} + multiset(xs[1..]); assert multiset{xs[0]} + multiset(xs[1..]) - multiset{xs[0]} == multiset(xs[1..]); assert multiset(ys) == multiset{xs[0]} + multiset(ys[1..]); multisetsEqualSortedAreEqual(xs[1..], ys[1..]); } } </code>
    predicate sortedRec(list: seq<int>) {
        if list == [] then true else (forall y :: y in list[1..] ==> list[0] <= y) && sortedRec(list[1..])
    }

    function merge(xs: seq<int>, ys: seq<int>): seq<int>
        requires sortedRec(xs)
        requires sortedRec(ys)
        ensures sortedRec(merge(xs, ys))
        ensures multiset(merge(xs,ys)) == multiset(xs)+multiset(ys)
    {
        if xs == [] then ys else
        if ys == [] then xs else
        if xs[0] <= ys[0] then 
            assert xs == [xs[0]] + xs[1..];
            assert ys == [ys[0]] + ys[1..];
            assert forall x :: x in merge(xs[1..], ys) ==> x in xs[1..] || x in ys ==> xs[0] <= x;
            // assert sortedRec(merge(xs[1..], ys));
            var result := [xs[0]] + merge(xs[1..], ys);
            assert forall x :: x in result[1..] ==> x in multiset(xs[1..])+multiset(ys);
            result
        else 
            assert xs == [xs[0]] + xs[1..];
            assert ys == [ys[0]] + ys[1..];
            assert forall x :: x in merge(xs, ys[1..]) ==> x in xs || x in ys[1..] ==> ys[0] <= x;
            var result := [ys[0]] + merge(xs, ys[1..]);
            assert forall x :: x in result[1..] ==>x in multiset(xs) + multiset(ys[1..]);
            result
    }

    function mset_mset(xss: seq<seq<int>>): multiset<int>
        ensures forall xs :: xs in xss ==> forall x :: x in xs ==> x in mset_mset(xss) 
    {
        if xss == [] then multiset{} else
            assert xss == [xss[0]] + xss[1..]; 
            multiset(xss[0]) + mset_mset(xss[1..])
    }

    function {:verify true} merge_adj(xss: seq<seq<int>>): seq<seq<int>>
        requires forall xs :: xs in xss ==> sortedRec(xs)
        ensures |merge_adj(xss)| == (|xss| + 1)/2
        ensures mset_mset(xss) == mset_mset(merge_adj(xss))
        ensures forall xs :: xs in merge_adj(xss) ==> sortedRec(xs)
    {
    if xss == [] then []
    else if |xss| == 1 then xss
    else [merge(xss[0], xss[1])] + merge_adj(xss[2..])
    }

    function {:verify true} merge_all(xss: seq<seq<int>>): seq<int>
        requires forall xs :: xs in xss ==> sortedRec(xs)
        ensures sortedRec(merge_all(xss))
        ensures multiset(merge_all(xss)) == mset_mset(xss)
        decreases |xss|
    {
        if xss == [] then []
        else if |xss| == 1 then xss[0]
        else merge_all(merge_adj(xss))
    }


    function splitSeq(xs: seq<int>): seq<seq<int>>
        ensures multiset(xs) == mset_mset(splitSeq(xs))
        ensures forall ys :: ys in splitSeq(xs) ==> sortedRec(ys)
    {
        if xs == [] then [] else
            assert xs == [xs[0]] + xs[1..];
            [[xs[0]]] + splitSeq(xs[1..])
    }

    function {:verify true} msort_bu(xs: seq<int>): seq<int>
        ensures multiset(xs) == multiset(msort_bu(xs))
        ensures sortedRec(msort_bu(xs))
    {
        merge_all(splitSeq(xs))
    }

    function subtractOneFromList(xs: seq<int>, x: int): seq<int>
        requires x in multiset(xs)
    {
        if xs[0] == x then
            assert xs == [xs[0]] + xs[1..];
            assert multiset(xs) == multiset([xs[0]]) + multiset(xs[1..]);
            assert multiset(xs)-multiset{x} == multiset(xs[1..]);
            xs[1..]
        else
        [xs[0]] + subtractOneFromList(xs[1..], x)
    }

    lemma subtractOneFromListLemma(xs: seq<int>, x: int)
        requires x in multiset(xs)
        ensures multiset(xs)-multiset{x} == multiset(subtractOneFromList(xs, x))
    {
        var retval := subtractOneFromList(xs, x);
        var mset := multiset(xs);
        if xs[0] == x {
            assert xs == [xs[0]] + xs[1..];
            assert mset == multiset([xs[0]]) + multiset(xs[1..]);
            assert mset - multiset{x} == multiset(xs[1..]);
            assert mset - multiset{x} == multiset(retval);
        } else {
            assert xs == [xs[0]] + xs[1..];
            assert mset == multiset([xs[0]]) + multiset(xs[1..]);
        }
    }

    lemma multisetsEqualSortedAreEqual(xs: seq<int>, ys: seq<int>)
        requires multiset(xs) == multiset(ys)
        requires sortedRec(xs)
        requires sortedRec(ys)
        ensures xs == ys
    {
        if xs == [] {
        } else {
            assert xs == [xs[0]] + xs[1..];
            assert ys == [ys[0]] + ys[1..];
            assert xs[0] == ys[0] by {
                assert forall x :: x in xs ==> x in multiset(xs) && x in multiset(ys) &&  x in ys;
                assert forall y :: y in ys ==> y in multiset(ys) && y in multiset(xs) && y in xs;
                if xs[0] != ys[0] {
                    if xs[0] < ys[0] {
                        assert xs[0] in ys[1..];
                        assert ys[0] in xs;
                        assert false;
                    } else {
                        assert ys[0] < xs[0];
                        assert xs[0] in ys[1..];
                        assert ys[0] in xs;
                        assert false;
                    }
                }
            }
            assert multiset(xs) == multiset(ys);
            assert multiset(xs) == multiset([xs[0]]) + multiset(xs[1..]);
            assert multiset(xs) == multiset{xs[0]} + multiset(xs[1..]);
            assert multiset{xs[0]} + multiset(xs[1..]) - multiset{xs[0]} == multiset(xs[1..]);
            assert multiset(ys) == multiset{xs[0]} + multiset(ys[1..]);
            multisetsEqualSortedAreEqual(xs[1..], ys[1..]);
        }
    }

1

The Dafny documentation contains some tips on how to reduce the resource count: https://dafny.org/latest/VerificationOptimization/VerificationOptimization. For example, you could try to label your assertions and preconditions and reveal them only where they are needed.

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật