I’m using from databricks.feature_engineering import FeatureEngineering
functions for the future store.
I’d like to perform a score batch inference.
After logging a simple RF classifier:
fe = FeatureEngineeringClient()
fe.log_model(
model=model,
artifact_path=artifact_path,
flavor=flavor,
training_set=training_set,
registered_model_name=model_name
)
I want to do score batch inference, but I need the probabilities, not just the predicted label.
The score_batch
function only retrieves the predicted label. If changed the name of the prediction columns in the classifier, still, the prediction label expected by score_batch
has to be double.
prediction_df = fe.score_batch(
model_uri=uc_modeling.get_lastest_model_uri(),
df=batch_input_df)
Thanks!