how to debug errors that are not pointed out by the validation layer?

I am trying Vulkan for the first time. I have never done any graphics Programming ever.
I know I should probably start from something simpler like openGL instead but vulkan just felt like it would be better if I learn just a little bit of vulkan and just get a simple gradient hello triangle on the screen, but I kinda failed and I don’t really know how to debug anything that the validation layer not point out either, cause I was only able to get the basics down.

I wrote some pretty crappy c++ code but I was successful at getting something on the screen, a blue triangle, which felt pretty good, but the thing is that it was supposed to be gradient so i tried to switch things here and there but nothing really happen, so I just wanted some help from the professionals or just professional enough to point out my mistakes.

I would also like you would tell me about any tools or methods to debug problems like this that are not pointed out by the Validation Layer.

here is my crappy code :

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>#define GLFW_INCLUDE_VULKAN
#include <GLFW/glfw3.h>
#include <vector>
#include <iostream>
#include <fstream>
#include <sstream>
#include <unordered_map>
#include <bitset>
struct Position {float a, b;};
struct Color {float r, g, b;};
struct Vertex {Position pos; Color col;};
Vertex vertices[] = {
{{0.0, -0.5},{1.0, 0.0, 0.0}},
{{0.5, 0.5},{0.0, 1.0, 0.0}},
{{-0.5, 0.5},{0.0, 0.0, 1.0}}
};
int main(){
glfwInit();
glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
uint32_t count; glfwGetRequiredInstanceExtensions(&count);
VkInstance instance = 0; {
const char* layers[] = {
"VK_LAYER_KHRONOS_validation"
};
VkInstanceCreateInfo info = {
.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
.enabledLayerCount = 1,
.ppEnabledLayerNames = layers,
.enabledExtensionCount = 2,
.ppEnabledExtensionNames = glfwGetRequiredInstanceExtensions(&count)
}; vkCreateInstance(&info, 0, &instance);
}
VkDevice device = 0;
VkPhysicalDevice gpu = 0; {
{
uint32_t count = 1; vkEnumeratePhysicalDevices(instance, &count, &gpu);
}
float prior[] = {1.0f};
VkDeviceQueueCreateInfo queues[] = {
{
.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
.queueFamilyIndex = 0,
.queueCount = 1,
.pQueuePriorities = prior
}
};
const char* exts[] = {
VK_KHR_SWAPCHAIN_EXTENSION_NAME
};
VkDeviceCreateInfo info = {
.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
.queueCreateInfoCount = 1,
.pQueueCreateInfos = queues,
.enabledExtensionCount = 1,
.ppEnabledExtensionNames = exts
}; vkCreateDevice(gpu, &info, 0, &device);
}
GLFWwindow* window = glfwCreateWindow(1000, 600, "tt", 0, 0);
VkSurfaceKHR surface = 0; {
glfwCreateWindowSurface(instance, window, 0, &surface);
}
VkSwapchainKHR swapchain = 0; {
VkSurfaceCapabilitiesKHR capa;
vkGetPhysicalDeviceSurfaceCapabilitiesKHR(gpu, surface, &capa);
VkSwapchainCreateInfoKHR info = {
.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
.surface = surface,
.minImageCount = 2,
.imageFormat = VK_FORMAT_R8G8B8A8_UNORM,
.imageColorSpace = VK_COLORSPACE_SRGB_NONLINEAR_KHR,
.imageExtent = capa.currentExtent,
.imageArrayLayers = 1,
.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE,
.preTransform = capa.currentTransform,
.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,
.presentMode = VK_PRESENT_MODE_FIFO_KHR,
.clipped = VK_TRUE,
}; vkCreateSwapchainKHR(device, &info, 0, &swapchain);
}
std::vector<VkImageView> swapchain_views;{
uint32_t count = 0;
vkGetSwapchainImagesKHR(device, swapchain, &count, 0);
std::vector<VkImage> swapchain_images(count); swapchain_views.resize(count);
vkGetSwapchainImagesKHR(device, swapchain, &count, swapchain_images.data());
VkImageViewCreateInfo info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = VK_FORMAT_R8G8B8A8_UNORM,
.components = {
VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY
},
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1
}
};
count = 0; for(auto&image:swapchain_images){
info.image = image;
vkCreateImageView(device, &info, 0, &swapchain_views[count]);
count+=1;
}
}
VkRenderPass renderpass = 0; {
VkAttachmentDescription attachments[] = {
{
.format = VK_FORMAT_R8G8B8A8_UNORM,
.samples = VK_SAMPLE_COUNT_1_BIT,
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR
}
};
VkAttachmentReference ref[] = {
{
.attachment = 0,
.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
}
};
VkSubpassDescription subpasses[] = {
{
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.colorAttachmentCount = 1,
.pColorAttachments = ref,
}
};
VkSubpassDependency dependencies[] = {
{
.srcSubpass = VK_SUBPASS_EXTERNAL,
.dstSubpass = 0,
.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
.srcAccessMask = 0,
.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
.dependencyFlags = 0
}
};
VkRenderPassCreateInfo info = {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = attachments,
.subpassCount = 1,
.pSubpasses = subpasses,
.dependencyCount = 1,
.pDependencies = dependencies
}; vkCreateRenderPass(device, &info, 0, &renderpass);
}
VkShaderModule vert;{
std::fstream file("vert.spv", std::ios::in | std::ios::binary);
std::stringstream oss; oss << file.rdbuf();
auto str = oss.str();
VkShaderModuleCreateInfo info = {
.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO,
.codeSize = str.size(),
.pCode = reinterpret_cast<const uint32_t*>(str.data())
}; if(file.is_open()) vkCreateShaderModule(device, &info, 0, &vert); else std::cout<<"no vert shadern";
}
VkShaderModule frag;{
std::fstream file("frag.spv", std::ios::in | std::ios::binary);
std::stringstream oss; oss << file.rdbuf();
auto str = oss.str();
VkShaderModuleCreateInfo info = {
.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO,
.codeSize = str.size(),
.pCode = reinterpret_cast<const uint32_t*>(str.data())
}; if(file.is_open()) vkCreateShaderModule(device, &info, 0, &frag); else std::cout<<"no frag shadern";
}
VkPipelineLayout layout = 0; {
VkPipelineLayoutCreateInfo info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO
}; vkCreatePipelineLayout(device, &info, 0, &layout);
}
VkPipeline gfx_pipeline = 0; {
VkPipelineShaderStageCreateInfo stages[] = {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VkShaderStageFlagBits::VK_SHADER_STAGE_VERTEX_BIT,
.module = vert,
.pName = "main"
},
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VkShaderStageFlagBits::VK_SHADER_STAGE_FRAGMENT_BIT,
.module = frag,
.pName = "main"
}
}; VkVertexInputBindingDescription vert_bind_desc[] = {
{
.binding = 0,
.stride = sizeof(Vertex),
.inputRate = VK_VERTEX_INPUT_RATE_VERTEX
}
}; VkVertexInputAttributeDescription vert_attr_desc[] ={
{
.location = 0,
.binding = 0,
.format = VK_FORMAT_R32G32_SFLOAT,
.offset = offsetof(Vertex, pos)
},
{
.location = 1,
.binding = 0,
.format = VK_FORMAT_R8G8B8_UNORM,
.offset = offsetof(Vertex, col)
}
}; VkPipelineVertexInputStateCreateInfo vertexInputs[] = {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
.vertexBindingDescriptionCount = 1,
.pVertexBindingDescriptions = vert_bind_desc,
.vertexAttributeDescriptionCount = 2,
.pVertexAttributeDescriptions = vert_attr_desc
}
}; VkPipelineInputAssemblyStateCreateInfo inputAssembly[] = {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST
}
}; VkPipelineViewportStateCreateInfo viewport[] = {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.scissorCount = 1,
}
}; VkPipelineRasterizationStateCreateInfo raterizer[] = {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.polygonMode = VK_POLYGON_MODE_FILL,
.cullMode = VK_CULL_MODE_BACK_BIT,
.frontFace = VK_FRONT_FACE_CLOCKWISE,
.lineWidth = 1.
}
}; VkPipelineMultisampleStateCreateInfo multisample[] = {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT
}
}; VkPipelineColorBlendAttachmentState colorblendAtt[] = {
{
.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT,
}
};
VkPipelineColorBlendStateCreateInfo colorblend[] = {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.logicOp = VK_LOGIC_OP_COPY,
.attachmentCount = 1,
.pAttachments = colorblendAtt,
.blendConstants = {.0, .0, .0, .0}
}
}; VkDynamicState dynamic_states[] = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR};
VkPipelineDynamicStateCreateInfo dynamics[] = {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.dynamicStateCount = 2,
.pDynamicStates = dynamic_states,
}
};
VkGraphicsPipelineCreateInfo info = {
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.stageCount = 2,
.pStages = stages,
.pVertexInputState = vertexInputs,
.pInputAssemblyState = inputAssembly,
.pTessellationState = 0,
.pViewportState = viewport,
.pRasterizationState = raterizer,
.pMultisampleState = multisample,
.pDepthStencilState = 0,
.pColorBlendState = colorblend,
.pDynamicState = dynamics,
.layout = layout,
.renderPass = renderpass,
.subpass = 0,
.basePipelineHandle = 0,
.basePipelineIndex = -1
}; vkCreateGraphicsPipelines(device, 0, 1, &info, 0, &gfx_pipeline);
}
std::vector<VkFramebuffer> framebuffers(swapchain_views.size()); {
int width, height;
glfwGetFramebufferSize(window, &width, &height);
VkFramebufferCreateInfo info = {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.renderPass = renderpass,
.attachmentCount = 1,
.width = static_cast<uint32_t>(width),
.height = static_cast<uint32_t>(height),
.layers = 1
}; uint32_t count = 0; for(auto&view:swapchain_views){
info.pAttachments = &view;
vkCreateFramebuffer(device, &info, 0, &framebuffers[count]);
count+=1;
}
}
VkQueue queue = 0; {
vkGetDeviceQueue(device, 0, 0, &queue);
}
VkCommandPool pool = 0; {
VkCommandPoolCreateInfo info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,
.queueFamilyIndex = 0
}; vkCreateCommandPool(device, &info, 0, &pool);
}
std::vector<VkCommandBuffer> commandBuffers(framebuffers.size()); {
VkCommandBufferAllocateInfo info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
.commandPool = pool,
.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
.commandBufferCount = 2
}; vkAllocateCommandBuffers(device, &info, commandBuffers.data());
}
std::vector<VkFence> imgPresented(framebuffers.size()); {
VkFenceCreateInfo info = {
.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,
.flags = VK_FENCE_CREATE_SIGNALED_BIT
}; for(auto&fence:imgPresented) vkCreateFence(device, &info, 0, &fence);
}
std::vector<VkSemaphore> renderFinished(framebuffers.size());
std::vector<VkSemaphore> imageAccquired(framebuffers.size()); {
VkSemaphoreCreateInfo info = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO
};
for(auto&sema:renderFinished) vkCreateSemaphore(device, &info, 0, &sema);
for(auto&sema:imageAccquired) vkCreateSemaphore(device, &info, 0, &sema);
}
std::unordered_map<VkMemoryPropertyFlags ,const char*> memories(6);{
memories[VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT] = "DEVICE_LOCAL";
memories[VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT] = "HOST_VISIBLE";
memories[VK_MEMORY_PROPERTY_HOST_COHERENT_BIT] = "HOST_COHERENT";
memories[VK_MEMORY_PROPERTY_HOST_CACHED_BIT] = "HOST_CACHED";
memories[VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT] = "LAZILY_ALLOCATED";
memories[VK_MEMORY_PROPERTY_PROTECTED_BIT] = "PROTECTED";
}
auto types = [&memories](VkMemoryPropertyFlags flag) -> std::string {
std::string str = ""; uint32_t bit = 1;
for(uint32_t i = 1; i<32;i++){
if(flag&bit) str = str + memories[bit] + " ";
bit=bit<<1;
}
return str;
};
std::unordered_map<VkMemoryMapFlags, uint32_t> mem_indices; {
VkPhysicalDeviceMemoryProperties memory_properties;
vkGetPhysicalDeviceMemoryProperties(gpu, &memory_properties);
mem_indices.reserve(memory_properties.memoryTypeCount);
for(int i=0;i<memory_properties.memoryTypeCount;i++){
mem_indices[memory_properties.memoryTypes[i].propertyFlags]=i;
} std::cout<<"memory types : n";
for(auto&pair:mem_indices){
std::bitset<sizeof(decltype(memory_properties.memoryTypes[0].propertyFlags))*8> the_bits(pair.first);
std::cout<<"tat index|"<<pair.second<<"| : "<<the_bits<<" ( "<<types(pair.first)<<")"<<std::endl;
}
}
VkDeviceMemory vertexMemory = 0;
VkBuffer vertexBuffer = 0; {
VkBufferCreateInfo info = {
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.size = sizeof(vertices),
.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE
}; vkCreateBuffer(device, &info, 0, &vertexBuffer);
VkMemoryRequirements requirements;
vkGetBufferMemoryRequirements(device, vertexBuffer, &requirements);
if(mem_indices.find(requirements.memoryTypeBits|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)==mem_indices.end()) goto CLEAN;
std::cout<<"required : "<<types(requirements.memoryTypeBits)<<std::endl;
std::cout<<"requesting : "<< types(requirements.memoryTypeBits|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)<<std::endl;
VkMemoryAllocateInfo alloc_info = {
.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
.allocationSize = requirements.size,
.memoryTypeIndex = mem_indices[requirements.memoryTypeBits|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT]
}; vkAllocateMemory(device, &alloc_info, 0, &vertexMemory);
VkPhysicalDeviceFeatures feat; vkGetPhysicalDeviceFeatures(gpu, &feat);
void* data = 0;
vkMapMemory(device, vertexMemory, 0, sizeof(vertices), 0, &data);
memcpy(data, vertices, sizeof(vertices));
vkUnmapMemory(device, vertexMemory);
vkBindBufferMemory(device, vertexBuffer, vertexMemory, 0);
}
VkRect2D extent; {
int width, height;
glfwGetFramebufferSize(window, &width, &height);
extent = {
.offset = {
.x = 0,
.y = 0
},
.extent = {
.width = static_cast<uint32_t>(width),
.height = static_cast<uint32_t>(height)
}
};
}
VkViewport viewport{
.x = 0,
.y = 0,
.width = (float)extent.extent.width,
.height = (float)extent.extent.height,
.minDepth = .0,
.maxDepth = 1.
};
VkRect2D scissor{
.offset = {0, 0},
.extent = extent.extent
};
uint32_t curr = 0;
while(!glfwWindowShouldClose(window)){
glfwPollEvents();
vkWaitForFences(device, 1, &imgPresented[curr], VK_TRUE, UINT64_MAX);
vkResetFences(device, 1, &imgPresented[curr]);
uint32_t imgIndex;
vkAcquireNextImageKHR(device, swapchain, UINT64_MAX, imageAccquired[curr], 0, &imgIndex);
vkResetCommandBuffer(commandBuffers[curr], 0);
VkCommandBufferBeginInfo begin = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
};
vkBeginCommandBuffer(commandBuffers[curr], &begin); VkClearValue clearColor = {{{0.0f, 0.0f, 0.0f, 1.0f}}};
VkRenderPassBeginInfo renderpass_info = {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderPass = renderpass,
.framebuffer = framebuffers[imgIndex],
.renderArea = {
.offset = {0, 0},
.extent = extent.extent
},
.clearValueCount = 1,
.pClearValues = &clearColor
};
vkCmdBeginRenderPass(commandBuffers[curr], &renderpass_info, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(commandBuffers[curr], VK_PIPELINE_BIND_POINT_GRAPHICS, gfx_pipeline);
vkCmdSetViewport(commandBuffers[curr], 0, 1, &viewport); vkCmdSetScissor(commandBuffers[curr], 0, 1, &scissor);
VkDeviceSize offsets[]{0};
vkCmdBindVertexBuffers(commandBuffers[curr], 0, 1, &vertexBuffer, offsets);
vkCmdDraw(commandBuffers[curr], 3, 1, 0, 0);
vkCmdEndRenderPass(commandBuffers[curr]);
vkEndCommandBuffer(commandBuffers[curr]); VkPipelineStageFlags flag = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
VkSubmitInfo submitInfo{
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.waitSemaphoreCount = 1,
.pWaitSemaphores = &imageAccquired[curr],
.pWaitDstStageMask = &flag,
.commandBufferCount = 1,
.pCommandBuffers = &commandBuffers[curr],
.signalSemaphoreCount = 1,
.pSignalSemaphores = &renderFinished[curr]
};
vkQueueSubmit(queue, 1, &submitInfo, imgPresented[curr]);
VkPresentInfoKHR presentInfo{
.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
.waitSemaphoreCount = 1,
.pWaitSemaphores = &renderFinished[curr],
.swapchainCount = 1,
.pSwapchains = &swapchain,
.pImageIndices = &imgIndex
};
vkQueuePresentKHR(queue, &presentInfo);
curr = (curr + 1) % 2;
}
vkQueueWaitIdle(queue);
vkDeviceWaitIdle(device);
vkFreeMemory(device, vertexMemory, 0);
CLEAN:
vkDestroyBuffer(device, vertexBuffer, 0);
for(auto&fence:imgPresented) vkDestroyFence(device, fence, 0);
for(auto&sema:renderFinished) vkDestroySemaphore(device, sema, 0);
for(auto&sema:imageAccquired) vkDestroySemaphore(device, sema, 0);
vkFreeCommandBuffers(device, pool, 2, commandBuffers.data());
vkDestroyCommandPool(device, pool, 0);
vkDestroyPipeline(device, gfx_pipeline, 0);
vkDestroyPipelineLayout(device, layout, 0);
vkDestroyRenderPass(device, renderpass, 0);
vkDestroyShaderModule(device, vert, 0);
vkDestroyShaderModule(device, frag, 0);
for(auto&frame:framebuffers) vkDestroyFramebuffer(device, frame, 0);
for(auto&view:swapchain_views) vkDestroyImageView(device, view, 0);
vkDestroySwapchainKHR(device, swapchain, 0);
vkDestroyDevice(device, 0);
vkDestroySurfaceKHR(instance, surface, 0);
glfwDestroyWindow(window);
vkDestroyInstance(instance, 0);
glfwTerminate();
return 0;
}
</code>
<code>#define GLFW_INCLUDE_VULKAN #include <GLFW/glfw3.h> #include <vector> #include <iostream> #include <fstream> #include <sstream> #include <unordered_map> #include <bitset> struct Position {float a, b;}; struct Color {float r, g, b;}; struct Vertex {Position pos; Color col;}; Vertex vertices[] = { {{0.0, -0.5},{1.0, 0.0, 0.0}}, {{0.5, 0.5},{0.0, 1.0, 0.0}}, {{-0.5, 0.5},{0.0, 0.0, 1.0}} }; int main(){ glfwInit(); glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API); uint32_t count; glfwGetRequiredInstanceExtensions(&count); VkInstance instance = 0; { const char* layers[] = { "VK_LAYER_KHRONOS_validation" }; VkInstanceCreateInfo info = { .sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, .enabledLayerCount = 1, .ppEnabledLayerNames = layers, .enabledExtensionCount = 2, .ppEnabledExtensionNames = glfwGetRequiredInstanceExtensions(&count) }; vkCreateInstance(&info, 0, &instance); } VkDevice device = 0; VkPhysicalDevice gpu = 0; { { uint32_t count = 1; vkEnumeratePhysicalDevices(instance, &count, &gpu); } float prior[] = {1.0f}; VkDeviceQueueCreateInfo queues[] = { { .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, .queueFamilyIndex = 0, .queueCount = 1, .pQueuePriorities = prior } }; const char* exts[] = { VK_KHR_SWAPCHAIN_EXTENSION_NAME }; VkDeviceCreateInfo info = { .sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, .queueCreateInfoCount = 1, .pQueueCreateInfos = queues, .enabledExtensionCount = 1, .ppEnabledExtensionNames = exts }; vkCreateDevice(gpu, &info, 0, &device); } GLFWwindow* window = glfwCreateWindow(1000, 600, "tt", 0, 0); VkSurfaceKHR surface = 0; { glfwCreateWindowSurface(instance, window, 0, &surface); } VkSwapchainKHR swapchain = 0; { VkSurfaceCapabilitiesKHR capa; vkGetPhysicalDeviceSurfaceCapabilitiesKHR(gpu, surface, &capa); VkSwapchainCreateInfoKHR info = { .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR, .surface = surface, .minImageCount = 2, .imageFormat = VK_FORMAT_R8G8B8A8_UNORM, .imageColorSpace = VK_COLORSPACE_SRGB_NONLINEAR_KHR, .imageExtent = capa.currentExtent, .imageArrayLayers = 1, .imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, .imageSharingMode = VK_SHARING_MODE_EXCLUSIVE, .preTransform = capa.currentTransform, .compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR, .presentMode = VK_PRESENT_MODE_FIFO_KHR, .clipped = VK_TRUE, }; vkCreateSwapchainKHR(device, &info, 0, &swapchain); } std::vector<VkImageView> swapchain_views;{ uint32_t count = 0; vkGetSwapchainImagesKHR(device, swapchain, &count, 0); std::vector<VkImage> swapchain_images(count); swapchain_views.resize(count); vkGetSwapchainImagesKHR(device, swapchain, &count, swapchain_images.data()); VkImageViewCreateInfo info = { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = VK_FORMAT_R8G8B8A8_UNORM, .components = { VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY }, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1 } }; count = 0; for(auto&image:swapchain_images){ info.image = image; vkCreateImageView(device, &info, 0, &swapchain_views[count]); count+=1; } } VkRenderPass renderpass = 0; { VkAttachmentDescription attachments[] = { { .format = VK_FORMAT_R8G8B8A8_UNORM, .samples = VK_SAMPLE_COUNT_1_BIT, .loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE, .stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE, .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, .finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR } }; VkAttachmentReference ref[] = { { .attachment = 0, .layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL } }; VkSubpassDescription subpasses[] = { { .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .colorAttachmentCount = 1, .pColorAttachments = ref, } }; VkSubpassDependency dependencies[] = { { .srcSubpass = VK_SUBPASS_EXTERNAL, .dstSubpass = 0, .srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, .dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, .srcAccessMask = 0, .dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, .dependencyFlags = 0 } }; VkRenderPassCreateInfo info = { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .attachmentCount = 1, .pAttachments = attachments, .subpassCount = 1, .pSubpasses = subpasses, .dependencyCount = 1, .pDependencies = dependencies }; vkCreateRenderPass(device, &info, 0, &renderpass); } VkShaderModule vert;{ std::fstream file("vert.spv", std::ios::in | std::ios::binary); std::stringstream oss; oss << file.rdbuf(); auto str = oss.str(); VkShaderModuleCreateInfo info = { .sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO, .codeSize = str.size(), .pCode = reinterpret_cast<const uint32_t*>(str.data()) }; if(file.is_open()) vkCreateShaderModule(device, &info, 0, &vert); else std::cout<<"no vert shadern"; } VkShaderModule frag;{ std::fstream file("frag.spv", std::ios::in | std::ios::binary); std::stringstream oss; oss << file.rdbuf(); auto str = oss.str(); VkShaderModuleCreateInfo info = { .sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO, .codeSize = str.size(), .pCode = reinterpret_cast<const uint32_t*>(str.data()) }; if(file.is_open()) vkCreateShaderModule(device, &info, 0, &frag); else std::cout<<"no frag shadern"; } VkPipelineLayout layout = 0; { VkPipelineLayoutCreateInfo info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO }; vkCreatePipelineLayout(device, &info, 0, &layout); } VkPipeline gfx_pipeline = 0; { VkPipelineShaderStageCreateInfo stages[] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VkShaderStageFlagBits::VK_SHADER_STAGE_VERTEX_BIT, .module = vert, .pName = "main" }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VkShaderStageFlagBits::VK_SHADER_STAGE_FRAGMENT_BIT, .module = frag, .pName = "main" } }; VkVertexInputBindingDescription vert_bind_desc[] = { { .binding = 0, .stride = sizeof(Vertex), .inputRate = VK_VERTEX_INPUT_RATE_VERTEX } }; VkVertexInputAttributeDescription vert_attr_desc[] ={ { .location = 0, .binding = 0, .format = VK_FORMAT_R32G32_SFLOAT, .offset = offsetof(Vertex, pos) }, { .location = 1, .binding = 0, .format = VK_FORMAT_R8G8B8_UNORM, .offset = offsetof(Vertex, col) } }; VkPipelineVertexInputStateCreateInfo vertexInputs[] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, .vertexBindingDescriptionCount = 1, .pVertexBindingDescriptions = vert_bind_desc, .vertexAttributeDescriptionCount = 2, .pVertexAttributeDescriptions = vert_attr_desc } }; VkPipelineInputAssemblyStateCreateInfo inputAssembly[] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST } }; VkPipelineViewportStateCreateInfo viewport[] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, } }; VkPipelineRasterizationStateCreateInfo raterizer[] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_BACK_BIT, .frontFace = VK_FRONT_FACE_CLOCKWISE, .lineWidth = 1. } }; VkPipelineMultisampleStateCreateInfo multisample[] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = VK_SAMPLE_COUNT_1_BIT } }; VkPipelineColorBlendAttachmentState colorblendAtt[] = { { .colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT, } }; VkPipelineColorBlendStateCreateInfo colorblend[] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .logicOp = VK_LOGIC_OP_COPY, .attachmentCount = 1, .pAttachments = colorblendAtt, .blendConstants = {.0, .0, .0, .0} } }; VkDynamicState dynamic_states[] = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR}; VkPipelineDynamicStateCreateInfo dynamics[] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 2, .pDynamicStates = dynamic_states, } }; VkGraphicsPipelineCreateInfo info = { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .stageCount = 2, .pStages = stages, .pVertexInputState = vertexInputs, .pInputAssemblyState = inputAssembly, .pTessellationState = 0, .pViewportState = viewport, .pRasterizationState = raterizer, .pMultisampleState = multisample, .pDepthStencilState = 0, .pColorBlendState = colorblend, .pDynamicState = dynamics, .layout = layout, .renderPass = renderpass, .subpass = 0, .basePipelineHandle = 0, .basePipelineIndex = -1 }; vkCreateGraphicsPipelines(device, 0, 1, &info, 0, &gfx_pipeline); } std::vector<VkFramebuffer> framebuffers(swapchain_views.size()); { int width, height; glfwGetFramebufferSize(window, &width, &height); VkFramebufferCreateInfo info = { .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .renderPass = renderpass, .attachmentCount = 1, .width = static_cast<uint32_t>(width), .height = static_cast<uint32_t>(height), .layers = 1 }; uint32_t count = 0; for(auto&view:swapchain_views){ info.pAttachments = &view; vkCreateFramebuffer(device, &info, 0, &framebuffers[count]); count+=1; } } VkQueue queue = 0; { vkGetDeviceQueue(device, 0, 0, &queue); } VkCommandPool pool = 0; { VkCommandPoolCreateInfo info = { .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, .flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT, .queueFamilyIndex = 0 }; vkCreateCommandPool(device, &info, 0, &pool); } std::vector<VkCommandBuffer> commandBuffers(framebuffers.size()); { VkCommandBufferAllocateInfo info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, .commandPool = pool, .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY, .commandBufferCount = 2 }; vkAllocateCommandBuffers(device, &info, commandBuffers.data()); } std::vector<VkFence> imgPresented(framebuffers.size()); { VkFenceCreateInfo info = { .sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, .flags = VK_FENCE_CREATE_SIGNALED_BIT }; for(auto&fence:imgPresented) vkCreateFence(device, &info, 0, &fence); } std::vector<VkSemaphore> renderFinished(framebuffers.size()); std::vector<VkSemaphore> imageAccquired(framebuffers.size()); { VkSemaphoreCreateInfo info = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO }; for(auto&sema:renderFinished) vkCreateSemaphore(device, &info, 0, &sema); for(auto&sema:imageAccquired) vkCreateSemaphore(device, &info, 0, &sema); } std::unordered_map<VkMemoryPropertyFlags ,const char*> memories(6);{ memories[VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT] = "DEVICE_LOCAL"; memories[VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT] = "HOST_VISIBLE"; memories[VK_MEMORY_PROPERTY_HOST_COHERENT_BIT] = "HOST_COHERENT"; memories[VK_MEMORY_PROPERTY_HOST_CACHED_BIT] = "HOST_CACHED"; memories[VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT] = "LAZILY_ALLOCATED"; memories[VK_MEMORY_PROPERTY_PROTECTED_BIT] = "PROTECTED"; } auto types = [&memories](VkMemoryPropertyFlags flag) -> std::string { std::string str = ""; uint32_t bit = 1; for(uint32_t i = 1; i<32;i++){ if(flag&bit) str = str + memories[bit] + " "; bit=bit<<1; } return str; }; std::unordered_map<VkMemoryMapFlags, uint32_t> mem_indices; { VkPhysicalDeviceMemoryProperties memory_properties; vkGetPhysicalDeviceMemoryProperties(gpu, &memory_properties); mem_indices.reserve(memory_properties.memoryTypeCount); for(int i=0;i<memory_properties.memoryTypeCount;i++){ mem_indices[memory_properties.memoryTypes[i].propertyFlags]=i; } std::cout<<"memory types : n"; for(auto&pair:mem_indices){ std::bitset<sizeof(decltype(memory_properties.memoryTypes[0].propertyFlags))*8> the_bits(pair.first); std::cout<<"tat index|"<<pair.second<<"| : "<<the_bits<<" ( "<<types(pair.first)<<")"<<std::endl; } } VkDeviceMemory vertexMemory = 0; VkBuffer vertexBuffer = 0; { VkBufferCreateInfo info = { .sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, .size = sizeof(vertices), .usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, .sharingMode = VK_SHARING_MODE_EXCLUSIVE }; vkCreateBuffer(device, &info, 0, &vertexBuffer); VkMemoryRequirements requirements; vkGetBufferMemoryRequirements(device, vertexBuffer, &requirements); if(mem_indices.find(requirements.memoryTypeBits|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)==mem_indices.end()) goto CLEAN; std::cout<<"required : "<<types(requirements.memoryTypeBits)<<std::endl; std::cout<<"requesting : "<< types(requirements.memoryTypeBits|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)<<std::endl; VkMemoryAllocateInfo alloc_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, .allocationSize = requirements.size, .memoryTypeIndex = mem_indices[requirements.memoryTypeBits|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT] }; vkAllocateMemory(device, &alloc_info, 0, &vertexMemory); VkPhysicalDeviceFeatures feat; vkGetPhysicalDeviceFeatures(gpu, &feat); void* data = 0; vkMapMemory(device, vertexMemory, 0, sizeof(vertices), 0, &data); memcpy(data, vertices, sizeof(vertices)); vkUnmapMemory(device, vertexMemory); vkBindBufferMemory(device, vertexBuffer, vertexMemory, 0); } VkRect2D extent; { int width, height; glfwGetFramebufferSize(window, &width, &height); extent = { .offset = { .x = 0, .y = 0 }, .extent = { .width = static_cast<uint32_t>(width), .height = static_cast<uint32_t>(height) } }; } VkViewport viewport{ .x = 0, .y = 0, .width = (float)extent.extent.width, .height = (float)extent.extent.height, .minDepth = .0, .maxDepth = 1. }; VkRect2D scissor{ .offset = {0, 0}, .extent = extent.extent }; uint32_t curr = 0; while(!glfwWindowShouldClose(window)){ glfwPollEvents(); vkWaitForFences(device, 1, &imgPresented[curr], VK_TRUE, UINT64_MAX); vkResetFences(device, 1, &imgPresented[curr]); uint32_t imgIndex; vkAcquireNextImageKHR(device, swapchain, UINT64_MAX, imageAccquired[curr], 0, &imgIndex); vkResetCommandBuffer(commandBuffers[curr], 0); VkCommandBufferBeginInfo begin = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, }; vkBeginCommandBuffer(commandBuffers[curr], &begin); VkClearValue clearColor = {{{0.0f, 0.0f, 0.0f, 1.0f}}}; VkRenderPassBeginInfo renderpass_info = { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderPass = renderpass, .framebuffer = framebuffers[imgIndex], .renderArea = { .offset = {0, 0}, .extent = extent.extent }, .clearValueCount = 1, .pClearValues = &clearColor }; vkCmdBeginRenderPass(commandBuffers[curr], &renderpass_info, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(commandBuffers[curr], VK_PIPELINE_BIND_POINT_GRAPHICS, gfx_pipeline); vkCmdSetViewport(commandBuffers[curr], 0, 1, &viewport); vkCmdSetScissor(commandBuffers[curr], 0, 1, &scissor); VkDeviceSize offsets[]{0}; vkCmdBindVertexBuffers(commandBuffers[curr], 0, 1, &vertexBuffer, offsets); vkCmdDraw(commandBuffers[curr], 3, 1, 0, 0); vkCmdEndRenderPass(commandBuffers[curr]); vkEndCommandBuffer(commandBuffers[curr]); VkPipelineStageFlags flag = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; VkSubmitInfo submitInfo{ .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO, .waitSemaphoreCount = 1, .pWaitSemaphores = &imageAccquired[curr], .pWaitDstStageMask = &flag, .commandBufferCount = 1, .pCommandBuffers = &commandBuffers[curr], .signalSemaphoreCount = 1, .pSignalSemaphores = &renderFinished[curr] }; vkQueueSubmit(queue, 1, &submitInfo, imgPresented[curr]); VkPresentInfoKHR presentInfo{ .sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, .waitSemaphoreCount = 1, .pWaitSemaphores = &renderFinished[curr], .swapchainCount = 1, .pSwapchains = &swapchain, .pImageIndices = &imgIndex }; vkQueuePresentKHR(queue, &presentInfo); curr = (curr + 1) % 2; } vkQueueWaitIdle(queue); vkDeviceWaitIdle(device); vkFreeMemory(device, vertexMemory, 0); CLEAN: vkDestroyBuffer(device, vertexBuffer, 0); for(auto&fence:imgPresented) vkDestroyFence(device, fence, 0); for(auto&sema:renderFinished) vkDestroySemaphore(device, sema, 0); for(auto&sema:imageAccquired) vkDestroySemaphore(device, sema, 0); vkFreeCommandBuffers(device, pool, 2, commandBuffers.data()); vkDestroyCommandPool(device, pool, 0); vkDestroyPipeline(device, gfx_pipeline, 0); vkDestroyPipelineLayout(device, layout, 0); vkDestroyRenderPass(device, renderpass, 0); vkDestroyShaderModule(device, vert, 0); vkDestroyShaderModule(device, frag, 0); for(auto&frame:framebuffers) vkDestroyFramebuffer(device, frame, 0); for(auto&view:swapchain_views) vkDestroyImageView(device, view, 0); vkDestroySwapchainKHR(device, swapchain, 0); vkDestroyDevice(device, 0); vkDestroySurfaceKHR(instance, surface, 0); glfwDestroyWindow(window); vkDestroyInstance(instance, 0); glfwTerminate(); return 0; } </code>
#define GLFW_INCLUDE_VULKAN
#include <GLFW/glfw3.h>
#include <vector>
#include <iostream>
#include <fstream>
#include <sstream>
#include <unordered_map>
#include <bitset>

struct Position {float a, b;};
struct Color {float r, g, b;};

struct Vertex {Position pos; Color col;};

Vertex vertices[] = {
    {{0.0, -0.5},{1.0, 0.0, 0.0}},
    {{0.5, 0.5},{0.0, 1.0, 0.0}},
    {{-0.5, 0.5},{0.0, 0.0, 1.0}}
};

int main(){

    glfwInit();
    glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
    uint32_t count; glfwGetRequiredInstanceExtensions(&count);
    VkInstance instance = 0; {
        const char* layers[] = {
            "VK_LAYER_KHRONOS_validation"
        };
        VkInstanceCreateInfo info = {
            .sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
            .enabledLayerCount = 1,
            .ppEnabledLayerNames = layers,
            .enabledExtensionCount = 2,
            .ppEnabledExtensionNames = glfwGetRequiredInstanceExtensions(&count)
        }; vkCreateInstance(&info, 0, &instance);
    }

    VkDevice device = 0;
    VkPhysicalDevice gpu = 0;  {
        {
            uint32_t count = 1; vkEnumeratePhysicalDevices(instance, &count, &gpu);
        }
        float prior[] = {1.0f};
        VkDeviceQueueCreateInfo queues[] = {
            {
                .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
                .queueFamilyIndex = 0,
                .queueCount = 1,
                .pQueuePriorities = prior
            }
        };
        
        const char* exts[] = {
            VK_KHR_SWAPCHAIN_EXTENSION_NAME
        };
        VkDeviceCreateInfo info = {
            .sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
            .queueCreateInfoCount = 1,
            .pQueueCreateInfos = queues,
            .enabledExtensionCount = 1,
            .ppEnabledExtensionNames = exts
        }; vkCreateDevice(gpu, &info, 0, &device);
    }

    GLFWwindow* window = glfwCreateWindow(1000, 600, "tt", 0, 0);
    VkSurfaceKHR surface = 0; {
        glfwCreateWindowSurface(instance, window, 0, &surface);
    }

    VkSwapchainKHR swapchain = 0; {
        VkSurfaceCapabilitiesKHR  capa;
        vkGetPhysicalDeviceSurfaceCapabilitiesKHR(gpu, surface, &capa);
        VkSwapchainCreateInfoKHR info = {
            .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
            .surface = surface,
            .minImageCount = 2,
            .imageFormat = VK_FORMAT_R8G8B8A8_UNORM,
            .imageColorSpace = VK_COLORSPACE_SRGB_NONLINEAR_KHR,
            .imageExtent = capa.currentExtent,
            .imageArrayLayers = 1,
            .imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
            .imageSharingMode = VK_SHARING_MODE_EXCLUSIVE,
            .preTransform = capa.currentTransform,
            .compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,
            .presentMode = VK_PRESENT_MODE_FIFO_KHR,
            .clipped = VK_TRUE,
        }; vkCreateSwapchainKHR(device, &info, 0, &swapchain);
    }
    std::vector<VkImageView> swapchain_views;{
        uint32_t count = 0;
        vkGetSwapchainImagesKHR(device, swapchain, &count, 0);
        std::vector<VkImage> swapchain_images(count); swapchain_views.resize(count);
        vkGetSwapchainImagesKHR(device, swapchain, &count, swapchain_images.data());
        VkImageViewCreateInfo info = {
            .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
            .viewType = VK_IMAGE_VIEW_TYPE_2D,
            .format = VK_FORMAT_R8G8B8A8_UNORM,
            .components = {
                VK_COMPONENT_SWIZZLE_IDENTITY, 
                VK_COMPONENT_SWIZZLE_IDENTITY, 
                VK_COMPONENT_SWIZZLE_IDENTITY, 
                VK_COMPONENT_SWIZZLE_IDENTITY
            },
            .subresourceRange = {
                .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
                .baseMipLevel = 0,
                .levelCount = 1,
                .baseArrayLayer = 0,
                .layerCount = 1
            }
        };
        
        count = 0; for(auto&image:swapchain_images){
            info.image = image;
            vkCreateImageView(device, &info, 0, &swapchain_views[count]);
            count+=1;
        }
    }
    VkRenderPass renderpass = 0; {
        VkAttachmentDescription attachments[] = {
            {
                .format = VK_FORMAT_R8G8B8A8_UNORM,
                .samples = VK_SAMPLE_COUNT_1_BIT,
                .loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
                .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
                .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
                .stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
                .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
                .finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR
            }
        };
        VkAttachmentReference ref[] = {
            {
                .attachment = 0,
                .layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
            }
        };
        VkSubpassDescription subpasses[] = {
            {
                .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
                .colorAttachmentCount = 1,
                .pColorAttachments = ref,
            }
        };
        VkSubpassDependency dependencies[] = {
            {
                .srcSubpass = VK_SUBPASS_EXTERNAL,
                .dstSubpass = 0,
                .srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
                .dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
                .srcAccessMask = 0,
                .dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
                .dependencyFlags = 0
            }
        };
        VkRenderPassCreateInfo info = {
            .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
            .attachmentCount = 1,
            .pAttachments = attachments,
            .subpassCount = 1,
            .pSubpasses = subpasses,
            .dependencyCount = 1,
            .pDependencies = dependencies
        }; vkCreateRenderPass(device, &info, 0, &renderpass);
    }
    VkShaderModule vert;{
        std::fstream file("vert.spv", std::ios::in | std::ios::binary);
        std::stringstream oss; oss << file.rdbuf();
        auto str = oss.str();
        VkShaderModuleCreateInfo info = {
            .sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO,
            .codeSize = str.size(),
            .pCode = reinterpret_cast<const uint32_t*>(str.data())
        }; if(file.is_open()) vkCreateShaderModule(device, &info, 0, &vert); else std::cout<<"no vert shadern";
    }
    VkShaderModule frag;{
        std::fstream file("frag.spv", std::ios::in | std::ios::binary);
        std::stringstream oss; oss << file.rdbuf();
        auto str = oss.str();
        VkShaderModuleCreateInfo info = {
            .sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO,
            .codeSize = str.size(),
            .pCode = reinterpret_cast<const uint32_t*>(str.data())
        }; if(file.is_open()) vkCreateShaderModule(device, &info, 0, &frag); else std::cout<<"no frag shadern";
    }
    VkPipelineLayout layout = 0; {
        VkPipelineLayoutCreateInfo info = {
            .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO
        }; vkCreatePipelineLayout(device, &info, 0, &layout);
    }
    VkPipeline gfx_pipeline = 0; {
        VkPipelineShaderStageCreateInfo stages[] = {
            {
                .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
                .stage = VkShaderStageFlagBits::VK_SHADER_STAGE_VERTEX_BIT,
                .module = vert,
                .pName = "main"
            },
            {
                .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
                .stage = VkShaderStageFlagBits::VK_SHADER_STAGE_FRAGMENT_BIT,
                .module = frag,
                .pName = "main"
            }
        }; VkVertexInputBindingDescription vert_bind_desc[] = {
            {
                .binding = 0,
                .stride = sizeof(Vertex),
                .inputRate = VK_VERTEX_INPUT_RATE_VERTEX
            }
        }; VkVertexInputAttributeDescription vert_attr_desc[] ={
            {
                .location = 0,
                .binding = 0,
                .format = VK_FORMAT_R32G32_SFLOAT,
                .offset = offsetof(Vertex, pos)
            },
            {
                .location = 1,
                .binding = 0,
                .format = VK_FORMAT_R8G8B8_UNORM,
                .offset = offsetof(Vertex, col)
            }
        }; VkPipelineVertexInputStateCreateInfo vertexInputs[] = {
            {
                .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
                .vertexBindingDescriptionCount = 1,
                .pVertexBindingDescriptions = vert_bind_desc,
                .vertexAttributeDescriptionCount = 2,
                .pVertexAttributeDescriptions = vert_attr_desc
            }
        }; VkPipelineInputAssemblyStateCreateInfo inputAssembly[] = {
            {
                .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
                .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST
            }
        }; VkPipelineViewportStateCreateInfo viewport[] = {
            {
                .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
                .viewportCount = 1,
                .scissorCount = 1,
            }
        }; VkPipelineRasterizationStateCreateInfo raterizer[] = {
            {
                .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
                .polygonMode = VK_POLYGON_MODE_FILL,
                .cullMode = VK_CULL_MODE_BACK_BIT,
                .frontFace = VK_FRONT_FACE_CLOCKWISE,
                .lineWidth = 1.
            }
        }; VkPipelineMultisampleStateCreateInfo multisample[] = {
            {
                .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
                .rasterizationSamples = VK_SAMPLE_COUNT_1_BIT
            }
        }; VkPipelineColorBlendAttachmentState colorblendAtt[] = {
            {
                .colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT,
            }
        };
        VkPipelineColorBlendStateCreateInfo colorblend[] = {
            {
                .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
                .logicOp = VK_LOGIC_OP_COPY,
                .attachmentCount = 1,
                .pAttachments = colorblendAtt,
                .blendConstants = {.0, .0, .0, .0}
            }
        }; VkDynamicState dynamic_states[] = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR};

        VkPipelineDynamicStateCreateInfo dynamics[] = {
            {
                .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
                .dynamicStateCount = 2,
                .pDynamicStates = dynamic_states,
            }
        }; 
        VkGraphicsPipelineCreateInfo info = {
            .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
            .stageCount = 2,
            .pStages = stages,
            .pVertexInputState = vertexInputs,
            .pInputAssemblyState = inputAssembly,
            .pTessellationState = 0,
            .pViewportState = viewport,
            .pRasterizationState = raterizer,
            .pMultisampleState = multisample,
            .pDepthStencilState = 0,
            .pColorBlendState = colorblend,
            .pDynamicState = dynamics,
            .layout = layout,
            .renderPass = renderpass,
            .subpass = 0,
            .basePipelineHandle = 0,
            .basePipelineIndex = -1
        }; vkCreateGraphicsPipelines(device, 0, 1, &info, 0, &gfx_pipeline);
    }
    std::vector<VkFramebuffer> framebuffers(swapchain_views.size()); {
        int width, height;
        glfwGetFramebufferSize(window, &width, &height);
        VkFramebufferCreateInfo info = {
            .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
            .renderPass = renderpass,
            .attachmentCount = 1,
            .width = static_cast<uint32_t>(width),
            .height = static_cast<uint32_t>(height),
            .layers = 1
        }; uint32_t count = 0; for(auto&view:swapchain_views){
            info.pAttachments = &view;
            vkCreateFramebuffer(device, &info, 0, &framebuffers[count]);
            count+=1;
        }
    }

    VkQueue queue = 0; {
        vkGetDeviceQueue(device, 0, 0, &queue);
    }
    VkCommandPool pool = 0; {
        VkCommandPoolCreateInfo info = {
            .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
            .flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,
            .queueFamilyIndex = 0
        }; vkCreateCommandPool(device, &info, 0, &pool);
    }
    std::vector<VkCommandBuffer> commandBuffers(framebuffers.size()); {
        VkCommandBufferAllocateInfo info = {
            .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
            .commandPool = pool,
            .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
            .commandBufferCount = 2
        }; vkAllocateCommandBuffers(device, &info, commandBuffers.data());
    }

    std::vector<VkFence> imgPresented(framebuffers.size()); {
        VkFenceCreateInfo info = {
            .sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,
            .flags = VK_FENCE_CREATE_SIGNALED_BIT
        }; for(auto&fence:imgPresented) vkCreateFence(device, &info, 0, &fence);
    }
    std::vector<VkSemaphore> renderFinished(framebuffers.size());
    std::vector<VkSemaphore> imageAccquired(framebuffers.size()); {
        VkSemaphoreCreateInfo info = {
            .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO
        };
        for(auto&sema:renderFinished) vkCreateSemaphore(device, &info, 0, &sema);
        for(auto&sema:imageAccquired) vkCreateSemaphore(device, &info, 0, &sema);
    }

    std::unordered_map<VkMemoryPropertyFlags ,const char*> memories(6);{
        memories[VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT] = "DEVICE_LOCAL";
        memories[VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT] = "HOST_VISIBLE";
        memories[VK_MEMORY_PROPERTY_HOST_COHERENT_BIT] = "HOST_COHERENT";
        memories[VK_MEMORY_PROPERTY_HOST_CACHED_BIT] = "HOST_CACHED";
        memories[VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT] = "LAZILY_ALLOCATED";
        memories[VK_MEMORY_PROPERTY_PROTECTED_BIT] = "PROTECTED";

    }
            
    auto types = [&memories](VkMemoryPropertyFlags flag) -> std::string {
        std::string str = ""; uint32_t bit = 1;
        for(uint32_t i = 1; i<32;i++){
            if(flag&bit) str = str + memories[bit] + " ";
            bit=bit<<1;
        }
        return str;
    };

    std::unordered_map<VkMemoryMapFlags, uint32_t> mem_indices; {
        VkPhysicalDeviceMemoryProperties memory_properties;
        vkGetPhysicalDeviceMemoryProperties(gpu, &memory_properties);
        mem_indices.reserve(memory_properties.memoryTypeCount);
        for(int i=0;i<memory_properties.memoryTypeCount;i++){
            mem_indices[memory_properties.memoryTypes[i].propertyFlags]=i;
        } std::cout<<"memory types : n";

        for(auto&pair:mem_indices){
            std::bitset<sizeof(decltype(memory_properties.memoryTypes[0].propertyFlags))*8> the_bits(pair.first);
            std::cout<<"tat index|"<<pair.second<<"| : "<<the_bits<<" ( "<<types(pair.first)<<")"<<std::endl;
        }
    }

    VkDeviceMemory vertexMemory = 0;
    VkBuffer vertexBuffer = 0; {
        VkBufferCreateInfo info = {
            .sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
            .size = sizeof(vertices),
            .usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
            .sharingMode = VK_SHARING_MODE_EXCLUSIVE
        }; vkCreateBuffer(device, &info, 0, &vertexBuffer);
        VkMemoryRequirements requirements;
        vkGetBufferMemoryRequirements(device, vertexBuffer, &requirements);
        if(mem_indices.find(requirements.memoryTypeBits|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)==mem_indices.end()) goto CLEAN;
        std::cout<<"required : "<<types(requirements.memoryTypeBits)<<std::endl;
        std::cout<<"requesting : "<< types(requirements.memoryTypeBits|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)<<std::endl;
        VkMemoryAllocateInfo alloc_info = {
            .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
            .allocationSize = requirements.size,
            .memoryTypeIndex = mem_indices[requirements.memoryTypeBits|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT]
        }; vkAllocateMemory(device, &alloc_info, 0, &vertexMemory);
        VkPhysicalDeviceFeatures feat; vkGetPhysicalDeviceFeatures(gpu, &feat);
        
        void* data = 0;

        vkMapMemory(device, vertexMemory, 0, sizeof(vertices), 0, &data);
        memcpy(data, vertices, sizeof(vertices));
        vkUnmapMemory(device, vertexMemory);
        vkBindBufferMemory(device, vertexBuffer, vertexMemory, 0);
    }
    VkRect2D extent; {
        int width, height;
        glfwGetFramebufferSize(window, &width, &height);
        extent = {
            .offset = {
                .x = 0,
                .y = 0
            },
            .extent = {
                .width = static_cast<uint32_t>(width),
                .height = static_cast<uint32_t>(height)
            }
        };
    }
    VkViewport viewport{
        .x = 0,
        .y = 0,
        .width = (float)extent.extent.width,
        .height = (float)extent.extent.height,
        .minDepth = .0,
        .maxDepth = 1.
    };
    VkRect2D scissor{
        .offset = {0, 0},
        .extent = extent.extent
    };
    uint32_t curr = 0;
    while(!glfwWindowShouldClose(window)){
        glfwPollEvents();
        vkWaitForFences(device, 1, &imgPresented[curr], VK_TRUE, UINT64_MAX);
        vkResetFences(device, 1, &imgPresented[curr]);
        uint32_t imgIndex;
        vkAcquireNextImageKHR(device, swapchain, UINT64_MAX, imageAccquired[curr], 0, &imgIndex);
        vkResetCommandBuffer(commandBuffers[curr], 0);
        VkCommandBufferBeginInfo begin = {
            .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
        }; 
        vkBeginCommandBuffer(commandBuffers[curr], &begin); VkClearValue clearColor = {{{0.0f, 0.0f, 0.0f, 1.0f}}};
        VkRenderPassBeginInfo renderpass_info = {
            .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
            .renderPass = renderpass,
            .framebuffer = framebuffers[imgIndex],
            .renderArea = {
                .offset = {0, 0},
                .extent = extent.extent
            },
            .clearValueCount = 1,
            .pClearValues = &clearColor
        }; 
        vkCmdBeginRenderPass(commandBuffers[curr], &renderpass_info, VK_SUBPASS_CONTENTS_INLINE);
        vkCmdBindPipeline(commandBuffers[curr], VK_PIPELINE_BIND_POINT_GRAPHICS, gfx_pipeline);
        vkCmdSetViewport(commandBuffers[curr], 0, 1, &viewport); vkCmdSetScissor(commandBuffers[curr], 0, 1, &scissor);
        VkDeviceSize offsets[]{0};
        vkCmdBindVertexBuffers(commandBuffers[curr], 0, 1, &vertexBuffer, offsets);
        vkCmdDraw(commandBuffers[curr], 3, 1, 0, 0);
        vkCmdEndRenderPass(commandBuffers[curr]);
        vkEndCommandBuffer(commandBuffers[curr]); VkPipelineStageFlags flag = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
        VkSubmitInfo submitInfo{
            .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
            .waitSemaphoreCount = 1,
            .pWaitSemaphores = &imageAccquired[curr],
            .pWaitDstStageMask = &flag,
            .commandBufferCount = 1,
            .pCommandBuffers = &commandBuffers[curr],
            .signalSemaphoreCount = 1,
            .pSignalSemaphores = &renderFinished[curr]
        };
        vkQueueSubmit(queue, 1, &submitInfo, imgPresented[curr]);
        VkPresentInfoKHR presentInfo{
            .sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
            .waitSemaphoreCount = 1,
            .pWaitSemaphores = &renderFinished[curr],
            .swapchainCount = 1,
            .pSwapchains = &swapchain,
            .pImageIndices = &imgIndex
        };
        vkQueuePresentKHR(queue, &presentInfo);
        curr = (curr + 1) % 2;
    }

    vkQueueWaitIdle(queue);
    vkDeviceWaitIdle(device);

    vkFreeMemory(device, vertexMemory, 0);

CLEAN:
    vkDestroyBuffer(device, vertexBuffer, 0);
    for(auto&fence:imgPresented) vkDestroyFence(device, fence, 0);
    for(auto&sema:renderFinished) vkDestroySemaphore(device, sema, 0);
    for(auto&sema:imageAccquired) vkDestroySemaphore(device, sema, 0);
    vkFreeCommandBuffers(device, pool, 2, commandBuffers.data());
    vkDestroyCommandPool(device, pool, 0);
    vkDestroyPipeline(device, gfx_pipeline, 0);
    vkDestroyPipelineLayout(device, layout, 0);
    vkDestroyRenderPass(device, renderpass, 0);
    vkDestroyShaderModule(device, vert, 0);
    vkDestroyShaderModule(device, frag, 0);
    for(auto&frame:framebuffers) vkDestroyFramebuffer(device, frame, 0);
    for(auto&view:swapchain_views) vkDestroyImageView(device, view, 0);
    vkDestroySwapchainKHR(device, swapchain, 0);
    vkDestroyDevice(device, 0);
    vkDestroySurfaceKHR(instance, surface, 0);
    glfwDestroyWindow(window);
    vkDestroyInstance(instance, 0);
    glfwTerminate();
    return 0;
}

the vertex shader :

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>#version 450
layout(location = 0) in vec2 inPos;
layout(location = 1) in vec3 inCol;
layout(location = 0) out vec3 fragColor;
void main(){
gl_Position = vec4(inPos, 0.0, 1.0);
fragColor = inCol;
}
</code>
<code>#version 450 layout(location = 0) in vec2 inPos; layout(location = 1) in vec3 inCol; layout(location = 0) out vec3 fragColor; void main(){ gl_Position = vec4(inPos, 0.0, 1.0); fragColor = inCol; } </code>
#version 450

layout(location = 0) in vec2 inPos;
layout(location = 1) in vec3 inCol;
layout(location = 0) out vec3 fragColor;

void main(){
    gl_Position = vec4(inPos, 0.0, 1.0);
    fragColor = inCol;
}

the fragment shader :

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>#version 450
layout(location = 0) in vec3 fragColor;
layout(location = 0) out vec4 outCol;
void main(){
outCol = vec4(fragColor, 1.0);
}
</code>
<code>#version 450 layout(location = 0) in vec3 fragColor; layout(location = 0) out vec4 outCol; void main(){ outCol = vec4(fragColor, 1.0); } </code>
#version 450

layout(location = 0) in vec3 fragColor;
layout(location = 0) out vec4 outCol;

void main(){
    outCol = vec4(fragColor, 1.0);
}

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật