Hello everyone i have a quantum computing task but i want to analyze this code in AWS BRAKET. how can i run this code in AWS BRAKET SV1. How to create circuit for this problem. How to initiliaze the circuit and device. Thank you
def quantum_algorithm(x_train, y_train, x_test, y_test):
print("Quantum algorithm is started")
print("Finding features")
num_features = x_train.shape[1]
# Drawing circuit diagram
feature_map = ZZFeatureMap(feature_dimension=num_features, reps=1)
feature_map.decompose().draw(output="mpl", style="clifford", fold=20)
print("Drawing ansatz circuit")
ansatz = RealAmplitudes(num_qubits=num_features, reps=3)
ansatz.decompose().draw(output="mpl", style="clifford", fold=20)
optimizer = COBYLA(maxiter=100)
sampler = Sampler()
objective_func_vals = []
plt.rcParams["figure.figsize"] = (12, 6)
def callback_graph(weights, obj_func_eval):
clear_output(wait=True)
objective_func_vals.append(obj_func_eval)
plt.title("Objective function value against iteration")
plt.xlabel("Iteration")
plt.ylabel("Objective function value")
plt.plot(range(len(objective_func_vals)), objective_func_vals)
plt.show()
vqc = VQC(sampler=sampler, feature_map=feature_map, ansatz=ansatz, optimizer=optimizer, callback=callback_graph)
# Clear objective value history
objective_func_vals = []
start = time.time()
print("Learning is started")
vqc.fit(x_train, y_train)
elapsed = time.time() - start
print(f"Training time: {round(elapsed)} seconds")
# Predict on train and test datasets
y_train_pred = vqc.predict(x_train)
y_test_pred = vqc.predict(x_test)