How to compare rows within the same csv file faster

I have a csv file containing 720,000 rows with and 10 columns, the columns that are relevant to the problem are ['timestamp_utc', 'looted_by__name', 'item_id', 'quantity']
This File is logs of items people loot of the ground in a game , the problem is that sometimes the loot logger of the ground bugs and types in the person looting the same item twice in two different rows (those two rows could be separated by up to 5 rows) with a slight difference in the 'timestamp_utc' Column other wise ['looted_by__name', 'item_id', 'quantity'] are the same
and example of this would be:

2024-06-23T11:40:43.2187312Z,Georgeeto,T4_SOUL,2

2024-06-23T11:40:43.4588316Z,Georgeeto,T4_SOUL,2

where in this example here the 2024-06-23T11:40:43.2187312Z would be the 'timestamp_utc'

'Georgeeto' would be the 'looted_by__name'

'T4_SOUL' would be the 'item_id'

'2' would be the 'quantity'

what am trying to do here is see if ['looted_by__name', 'item_id', 'quantity'] are equal in both rows and if they are subtract both rows time stamps from one another , and if it is less that 0.5 secs i copy both corrupted lines into a Corrupted.csv file and only put one of the lines in a Clean.csv file

the way i went about doing this is the following

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>import pandas as pd
import time
from datetime import datetime
start_time = time.time()
combined_df_3 = pd.read_csv("Proccesing/combined_file_refined.csv", delimiter= ',', usecols=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity'])
combined_df_4 = pd.read_csv("Proccesing/combined_file_refined.csv", delimiter= ',', usecols=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity'])
bugged_item_df = pd.DataFrame()
clean_item_df = pd.DataFrame()
bugged_item_list = []
clean_item_list = []
date_format = '%Y-%m-%dT%H:%M:%S.%f'
for index1,row1 in combined_df_3.iterrows():
n = 0
time_stamp_1 = datetime.strptime(row1['timestamp_utc'][:26], date_format)
name_1 = row1['looted_by__name']
item_id_1 = row1['item_id']
quantity_1 = row1['quantity']
for index2, row2 in combined_df_4.iterrows():
print(str(n))
n += 1
if n > 5:
break
time_stamp_2 = datetime.strptime(row2['timestamp_utc'][:26], date_format)
name_2 = row2['looted_by__name']
item_id_2 = row2['item_id']
quantity_2 = row2['quantity']
if time_stamp_1 == time_stamp_2 and name_1 == name_2 and item_id_1 == item_id_2 and quantity_2 == quantity_2:
break # get out of for loop here
elif name_1 == name_2 and item_id_1 == item_id_2 and quantity_1 == quantity_2:
if time_stamp_1 > time_stamp_2:
date_diff = abs(time_stamp_1 - time_stamp_2)
date_diff_sec = date_diff.total_seconds()
elif time_stamp_1 < time_stamp_2:
date_diff = abs(time_stamp_2 - time_stamp_1)
date_diff_sec = date_diff.total_seconds()
if date_diff_sec < 0.5:
bugged_item_df = bugged_item_df._append(row1 ,ignore_index=True)
bugged_item_df = bugged_item_df._append(row2 ,ignore_index=True) #add both lines into a csv file and not write 1 of them into the final csv file
elif date_diff_sec > 0.5:
pass # type line into a csv file normally
else:
pass # type line into a csv file normally
bugged_item_df.to_csv("test.csv", index=False)
clean_item_df.to_csv('test2.csv', index=False)
end_time = time.time()
execution_time = end_time - start_time
print(f"Execution time: {execution_time} seconds")
</code>
<code>import pandas as pd import time from datetime import datetime start_time = time.time() combined_df_3 = pd.read_csv("Proccesing/combined_file_refined.csv", delimiter= ',', usecols=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity']) combined_df_4 = pd.read_csv("Proccesing/combined_file_refined.csv", delimiter= ',', usecols=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity']) bugged_item_df = pd.DataFrame() clean_item_df = pd.DataFrame() bugged_item_list = [] clean_item_list = [] date_format = '%Y-%m-%dT%H:%M:%S.%f' for index1,row1 in combined_df_3.iterrows(): n = 0 time_stamp_1 = datetime.strptime(row1['timestamp_utc'][:26], date_format) name_1 = row1['looted_by__name'] item_id_1 = row1['item_id'] quantity_1 = row1['quantity'] for index2, row2 in combined_df_4.iterrows(): print(str(n)) n += 1 if n > 5: break time_stamp_2 = datetime.strptime(row2['timestamp_utc'][:26], date_format) name_2 = row2['looted_by__name'] item_id_2 = row2['item_id'] quantity_2 = row2['quantity'] if time_stamp_1 == time_stamp_2 and name_1 == name_2 and item_id_1 == item_id_2 and quantity_2 == quantity_2: break # get out of for loop here elif name_1 == name_2 and item_id_1 == item_id_2 and quantity_1 == quantity_2: if time_stamp_1 > time_stamp_2: date_diff = abs(time_stamp_1 - time_stamp_2) date_diff_sec = date_diff.total_seconds() elif time_stamp_1 < time_stamp_2: date_diff = abs(time_stamp_2 - time_stamp_1) date_diff_sec = date_diff.total_seconds() if date_diff_sec < 0.5: bugged_item_df = bugged_item_df._append(row1 ,ignore_index=True) bugged_item_df = bugged_item_df._append(row2 ,ignore_index=True) #add both lines into a csv file and not write 1 of them into the final csv file elif date_diff_sec > 0.5: pass # type line into a csv file normally else: pass # type line into a csv file normally bugged_item_df.to_csv("test.csv", index=False) clean_item_df.to_csv('test2.csv', index=False) end_time = time.time() execution_time = end_time - start_time print(f"Execution time: {execution_time} seconds") </code>
import pandas as pd
import time
from datetime import datetime

start_time = time.time()
combined_df_3 = pd.read_csv("Proccesing/combined_file_refined.csv", delimiter= ',', usecols=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity'])
combined_df_4 = pd.read_csv("Proccesing/combined_file_refined.csv", delimiter= ',', usecols=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity'])
bugged_item_df = pd.DataFrame()
clean_item_df = pd.DataFrame()

bugged_item_list = []
clean_item_list = []

date_format = '%Y-%m-%dT%H:%M:%S.%f'

for index1,row1 in combined_df_3.iterrows():
    n = 0 
    time_stamp_1 = datetime.strptime(row1['timestamp_utc'][:26], date_format)
    name_1 = row1['looted_by__name']
    item_id_1 = row1['item_id']
    quantity_1 = row1['quantity']
    

    for index2, row2 in combined_df_4.iterrows():
        print(str(n))
        n += 1
        if n > 5:
            break

        time_stamp_2 = datetime.strptime(row2['timestamp_utc'][:26], date_format)
        name_2 = row2['looted_by__name']
        item_id_2 = row2['item_id']
        quantity_2 = row2['quantity']



        if time_stamp_1 == time_stamp_2 and name_1 == name_2 and item_id_1 == item_id_2 and quantity_2 == quantity_2:
            break # get out of for loop here

        elif name_1 == name_2 and item_id_1 == item_id_2 and quantity_1 == quantity_2:
            if time_stamp_1 > time_stamp_2:
                date_diff = abs(time_stamp_1 - time_stamp_2)
                date_diff_sec = date_diff.total_seconds()
            
            elif time_stamp_1 < time_stamp_2:
                date_diff = abs(time_stamp_2 - time_stamp_1)
                date_diff_sec = date_diff.total_seconds()

            if date_diff_sec < 0.5:
                bugged_item_df = bugged_item_df._append(row1 ,ignore_index=True)
                bugged_item_df = bugged_item_df._append(row2 ,ignore_index=True) #add both lines into  a csv file and not write 1 of them into the final csv file
            
            elif date_diff_sec > 0.5:
                pass # type line into a csv file normally
        else:
            pass # type line into a csv file normally

bugged_item_df.to_csv("test.csv", index=False)
clean_item_df.to_csv('test2.csv', index=False)

end_time = time.time()
execution_time = end_time - start_time

print(f"Execution time: {execution_time} seconds")

The way am Doing it ‘Technically’ works , but it takes about 6-13hrs to go threw the entire file
I came to ask if there is a way to optimize it to run faster

note: code is not finished yet but you can get the idea from it

update:Thanks to the advice of AKZ (i love you man) i was able to reduce the time from 13.4hrs to 32mins, and i realised that the code i posted was done wrong in the for loop as well so i went with the following answer

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>import time
import pandas as pd
from datetime import datetime
#orgnizing the rows
df = pd.read_csv("proccesing/combined_file_refined.csv", delimiter= ',', usecols=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity'])
df = df.groupby(['looted_by__name', 'timestamp_utc']).sum().reset_index()
df.to_csv("test.csv", index=False)
bugged_item_df = pd.DataFrame()
clean_item_df = pd.DataFrame()
df1 =pd.read_csv("test.csv", delimiter= ',', usecols=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity'])
date_format = '%Y-%m-%dT%H:%M:%S.%f'
n = 0
num_of_runs = 0
start_time = time.time()
for index1,row1 in df.iterrows():
num_of_runs += 1
n += 1
try:
row2 = df1.iloc[n]
except IndexError:
clean_item_df = clean_item_df._append(row1 ,ignore_index=True)
break
time_stamp_1 = datetime.strptime(row1['timestamp_utc'][:26], date_format)
name_1 = row1['looted_by__name']
item_id_1 = row1['item_id']
quantity_1 = row1['quantity']
time_stamp_2 = datetime.strptime(row2['timestamp_utc'][:26], date_format)
name_2 = row2['looted_by__name']
item_id_2 = row2['item_id']
quantity_2 = row2['quantity']
if name_1 != name_2 or item_id_1 != item_id_2 or quantity_1 != quantity_2:
#add row 1 to df
continue
elif time_stamp_1 > time_stamp_2:
date_diff_1 = abs(time_stamp_1 - time_stamp_2)
date_diff_sec_1 = date_diff_1.total_seconds()
if date_diff_sec_1 < 0.5:
#donot add row 1 to df and add row 1 and row 2 to bugged item list
bugged_item_df = bugged_item_df._append(row1 ,ignore_index=True)
bugged_item_df = bugged_item_df._append(row2 ,ignore_index=True)
pass
elif date_diff_sec_1 > 0.5:
clean_item_df = clean_item_df._append(row1 ,ignore_index=True)
#add row 1 to df
continue
elif time_stamp_1 < time_stamp_2:
date_diff_2 = abs(time_stamp_2 - time_stamp_1)
date_diff_sec_2 = date_diff_2.total_seconds()
if date_diff_sec_2 < 0.5:
bugged_item_df = bugged_item_df._append(row1 ,ignore_index=True)
bugged_item_df = bugged_item_df._append(row2 ,ignore_index=True)
#donot add row 1 to df and add row 1 and row 2 to bugged item list
pass
elif date_diff_sec_2 > 0.5:
clean_item_df = clean_item_df._append(row1 ,ignore_index=True)
#add row 1 to df
continue
bugged_item_df.to_csv("bugged.csv", index=False)
clean_item_df.to_csv("clean.csv", index=False)
end_time = time.time()
execution_time = end_time - start_time
print(f"Execution time: {execution_time} seconds")
</code>
<code>import time import pandas as pd from datetime import datetime #orgnizing the rows df = pd.read_csv("proccesing/combined_file_refined.csv", delimiter= ',', usecols=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity']) df = df.groupby(['looted_by__name', 'timestamp_utc']).sum().reset_index() df.to_csv("test.csv", index=False) bugged_item_df = pd.DataFrame() clean_item_df = pd.DataFrame() df1 =pd.read_csv("test.csv", delimiter= ',', usecols=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity']) date_format = '%Y-%m-%dT%H:%M:%S.%f' n = 0 num_of_runs = 0 start_time = time.time() for index1,row1 in df.iterrows(): num_of_runs += 1 n += 1 try: row2 = df1.iloc[n] except IndexError: clean_item_df = clean_item_df._append(row1 ,ignore_index=True) break time_stamp_1 = datetime.strptime(row1['timestamp_utc'][:26], date_format) name_1 = row1['looted_by__name'] item_id_1 = row1['item_id'] quantity_1 = row1['quantity'] time_stamp_2 = datetime.strptime(row2['timestamp_utc'][:26], date_format) name_2 = row2['looted_by__name'] item_id_2 = row2['item_id'] quantity_2 = row2['quantity'] if name_1 != name_2 or item_id_1 != item_id_2 or quantity_1 != quantity_2: #add row 1 to df continue elif time_stamp_1 > time_stamp_2: date_diff_1 = abs(time_stamp_1 - time_stamp_2) date_diff_sec_1 = date_diff_1.total_seconds() if date_diff_sec_1 < 0.5: #donot add row 1 to df and add row 1 and row 2 to bugged item list bugged_item_df = bugged_item_df._append(row1 ,ignore_index=True) bugged_item_df = bugged_item_df._append(row2 ,ignore_index=True) pass elif date_diff_sec_1 > 0.5: clean_item_df = clean_item_df._append(row1 ,ignore_index=True) #add row 1 to df continue elif time_stamp_1 < time_stamp_2: date_diff_2 = abs(time_stamp_2 - time_stamp_1) date_diff_sec_2 = date_diff_2.total_seconds() if date_diff_sec_2 < 0.5: bugged_item_df = bugged_item_df._append(row1 ,ignore_index=True) bugged_item_df = bugged_item_df._append(row2 ,ignore_index=True) #donot add row 1 to df and add row 1 and row 2 to bugged item list pass elif date_diff_sec_2 > 0.5: clean_item_df = clean_item_df._append(row1 ,ignore_index=True) #add row 1 to df continue bugged_item_df.to_csv("bugged.csv", index=False) clean_item_df.to_csv("clean.csv", index=False) end_time = time.time() execution_time = end_time - start_time print(f"Execution time: {execution_time} seconds") </code>
import time
import pandas as pd
from datetime import datetime

#orgnizing the rows
df = pd.read_csv("proccesing/combined_file_refined.csv", delimiter= ',', usecols=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity'])
df = df.groupby(['looted_by__name', 'timestamp_utc']).sum().reset_index()
df.to_csv("test.csv", index=False)


bugged_item_df = pd.DataFrame()
clean_item_df = pd.DataFrame()
df1 =pd.read_csv("test.csv", delimiter= ',', usecols=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity'])
date_format = '%Y-%m-%dT%H:%M:%S.%f'
n = 0
num_of_runs = 0

start_time = time.time()

for index1,row1 in df.iterrows():
    num_of_runs += 1
    n += 1
    try:
        row2 = df1.iloc[n]
    except IndexError:
        clean_item_df = clean_item_df._append(row1 ,ignore_index=True)
        break
    time_stamp_1 = datetime.strptime(row1['timestamp_utc'][:26], date_format)
    name_1 = row1['looted_by__name']
    item_id_1 = row1['item_id']
    quantity_1 = row1['quantity']
    
    time_stamp_2 = datetime.strptime(row2['timestamp_utc'][:26], date_format)
    name_2 = row2['looted_by__name']
    item_id_2 = row2['item_id']
    quantity_2 = row2['quantity']

    if name_1 != name_2 or item_id_1 != item_id_2 or quantity_1 != quantity_2:
        #add row 1 to df
        continue
    elif time_stamp_1 > time_stamp_2:
        date_diff_1 = abs(time_stamp_1 - time_stamp_2)
        date_diff_sec_1 = date_diff_1.total_seconds()
        if date_diff_sec_1 < 0.5:
            #donot add row 1 to df and add row 1 and row 2 to bugged item list
            bugged_item_df = bugged_item_df._append(row1 ,ignore_index=True)
            bugged_item_df = bugged_item_df._append(row2 ,ignore_index=True)
            pass
        elif date_diff_sec_1 > 0.5:
            clean_item_df = clean_item_df._append(row1 ,ignore_index=True)
            #add row 1 to df
            continue

    elif time_stamp_1 < time_stamp_2:
        date_diff_2 = abs(time_stamp_2 - time_stamp_1)
        date_diff_sec_2 = date_diff_2.total_seconds()
        if date_diff_sec_2 < 0.5:
            bugged_item_df = bugged_item_df._append(row1 ,ignore_index=True)
            bugged_item_df = bugged_item_df._append(row2 ,ignore_index=True)
            #donot add row 1 to df and add row 1 and row 2 to bugged item list
            pass
        elif date_diff_sec_2 > 0.5:
            clean_item_df = clean_item_df._append(row1 ,ignore_index=True)
            #add row 1 to df
            continue
    

bugged_item_df.to_csv("bugged.csv", index=False)
clean_item_df.to_csv("clean.csv", index=False)

end_time = time.time()
execution_time = end_time - start_time
print(f"Execution time: {execution_time} seconds")

if someone has a better answer than the one i did please post it i will greatly appreciate it

update 2:
i edited the code again and realised i could just remove the bugged lines faster now it does it in 60secs

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>import time
import pandas as pd
from datetime import datetime
#orgnizing the rows
combined_df_3 = pd.read_csv("proccesing/combined_file_refined.csv", delimiter= ',', usecols=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity'])
combined_df_3 = combined_df_3.groupby(['looted_by__name', 'timestamp_utc']).sum().reset_index()
combined_df_3.to_csv("proccesing/combined_file_orgnized.csv", index=False)
bugged_item_df = pd.DataFrame()
bugged_item_2df = pd.DataFrame()
combined_df_4 =pd.read_csv("proccesing/combined_file_orgnized.csv", delimiter= ',', usecols=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity'])
date_format = '%Y-%m-%dT%H:%M:%S.%f'
num_of_runs = 0
for index1,row1 in combined_df_3.iterrows():
num_of_runs += 1
try:
row2 = combined_df_4.iloc[num_of_runs]
except IndexError:
break
time_stamp_1 = datetime.strptime(row1['timestamp_utc'][:26], date_format)
name_1 = row1['looted_by__name']
item_id_1 = row1['item_id']
quantity_1 = row1['quantity']
time_stamp_2 = datetime.strptime(row2['timestamp_utc'][:26], date_format)
name_2 = row2['looted_by__name']
item_id_2 = row2['item_id']
quantity_2 = row2['quantity']
if name_1 != name_2 or item_id_1 != item_id_2 or quantity_1 != quantity_2:
continue
elif time_stamp_1 > time_stamp_2:
date_diff_1 = abs(time_stamp_1 - time_stamp_2)
date_diff_sec_1 = date_diff_1.total_seconds()
if date_diff_sec_1 < 0.5:
#donot add row 1 to df and add row 1 and row 2 to bugged item list
bugged_item_df = bugged_item_df._append(row1 ,ignore_index=True)
bugged_item_df = bugged_item_df._append(row2 ,ignore_index=True)
bugged_item_2df = bugged_item_2df._append(row1,ignore_index=True)
elif time_stamp_1 < time_stamp_2:
date_diff_2 = abs(time_stamp_2 - time_stamp_1)
date_diff_sec_2 = date_diff_2.total_seconds()
if date_diff_sec_2 < 0.5:
bugged_item_df = bugged_item_df._append(row1 ,ignore_index=True)
bugged_item_df = bugged_item_df._append(row2 ,ignore_index=True)
bugged_item_2df = bugged_item_2df._append(row1,ignore_index=True)
#donot add row 1 to df and add row 1 and row 2 to bugged item list
bugged_item_df.to_csv("bugged.csv", index=False)
print('here')
clean_item_df = combined_df_3.merge(bugged_item_2df, on=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity'], how='left', indicator=True).query('_merge == "left_only"').drop('_merge', axis=1)
clean_item_df.to_csv("clean.csv", index=False)
</code>
<code>import time import pandas as pd from datetime import datetime #orgnizing the rows combined_df_3 = pd.read_csv("proccesing/combined_file_refined.csv", delimiter= ',', usecols=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity']) combined_df_3 = combined_df_3.groupby(['looted_by__name', 'timestamp_utc']).sum().reset_index() combined_df_3.to_csv("proccesing/combined_file_orgnized.csv", index=False) bugged_item_df = pd.DataFrame() bugged_item_2df = pd.DataFrame() combined_df_4 =pd.read_csv("proccesing/combined_file_orgnized.csv", delimiter= ',', usecols=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity']) date_format = '%Y-%m-%dT%H:%M:%S.%f' num_of_runs = 0 for index1,row1 in combined_df_3.iterrows(): num_of_runs += 1 try: row2 = combined_df_4.iloc[num_of_runs] except IndexError: break time_stamp_1 = datetime.strptime(row1['timestamp_utc'][:26], date_format) name_1 = row1['looted_by__name'] item_id_1 = row1['item_id'] quantity_1 = row1['quantity'] time_stamp_2 = datetime.strptime(row2['timestamp_utc'][:26], date_format) name_2 = row2['looted_by__name'] item_id_2 = row2['item_id'] quantity_2 = row2['quantity'] if name_1 != name_2 or item_id_1 != item_id_2 or quantity_1 != quantity_2: continue elif time_stamp_1 > time_stamp_2: date_diff_1 = abs(time_stamp_1 - time_stamp_2) date_diff_sec_1 = date_diff_1.total_seconds() if date_diff_sec_1 < 0.5: #donot add row 1 to df and add row 1 and row 2 to bugged item list bugged_item_df = bugged_item_df._append(row1 ,ignore_index=True) bugged_item_df = bugged_item_df._append(row2 ,ignore_index=True) bugged_item_2df = bugged_item_2df._append(row1,ignore_index=True) elif time_stamp_1 < time_stamp_2: date_diff_2 = abs(time_stamp_2 - time_stamp_1) date_diff_sec_2 = date_diff_2.total_seconds() if date_diff_sec_2 < 0.5: bugged_item_df = bugged_item_df._append(row1 ,ignore_index=True) bugged_item_df = bugged_item_df._append(row2 ,ignore_index=True) bugged_item_2df = bugged_item_2df._append(row1,ignore_index=True) #donot add row 1 to df and add row 1 and row 2 to bugged item list bugged_item_df.to_csv("bugged.csv", index=False) print('here') clean_item_df = combined_df_3.merge(bugged_item_2df, on=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity'], how='left', indicator=True).query('_merge == "left_only"').drop('_merge', axis=1) clean_item_df.to_csv("clean.csv", index=False) </code>
import time
import pandas as pd
from datetime import datetime

#orgnizing the rows
combined_df_3 = pd.read_csv("proccesing/combined_file_refined.csv", delimiter= ',', usecols=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity'])
combined_df_3 = combined_df_3.groupby(['looted_by__name', 'timestamp_utc']).sum().reset_index()
combined_df_3.to_csv("proccesing/combined_file_orgnized.csv", index=False)



bugged_item_df = pd.DataFrame()
bugged_item_2df = pd.DataFrame()
combined_df_4 =pd.read_csv("proccesing/combined_file_orgnized.csv", delimiter= ',', usecols=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity'])
date_format = '%Y-%m-%dT%H:%M:%S.%f'
num_of_runs = 0


for index1,row1 in combined_df_3.iterrows():
    num_of_runs += 1
    try:
        row2 = combined_df_4.iloc[num_of_runs]
    except IndexError:
        break
    time_stamp_1 = datetime.strptime(row1['timestamp_utc'][:26], date_format)
    name_1 = row1['looted_by__name']
    item_id_1 = row1['item_id']
    quantity_1 = row1['quantity']
    
    time_stamp_2 = datetime.strptime(row2['timestamp_utc'][:26], date_format)
    name_2 = row2['looted_by__name']
    item_id_2 = row2['item_id']
    quantity_2 = row2['quantity']

    if name_1 != name_2 or item_id_1 != item_id_2 or quantity_1 != quantity_2:
        continue
    elif time_stamp_1 > time_stamp_2:
        date_diff_1 = abs(time_stamp_1 - time_stamp_2)
        date_diff_sec_1 = date_diff_1.total_seconds()
        if date_diff_sec_1 < 0.5:
            #donot add row 1 to df and add row 1 and row 2 to bugged item list
            bugged_item_df = bugged_item_df._append(row1 ,ignore_index=True)
            bugged_item_df = bugged_item_df._append(row2 ,ignore_index=True)
            bugged_item_2df = bugged_item_2df._append(row1,ignore_index=True)
            

    elif time_stamp_1 < time_stamp_2:
        date_diff_2 = abs(time_stamp_2 - time_stamp_1)
        date_diff_sec_2 = date_diff_2.total_seconds()
        if date_diff_sec_2 < 0.5:
            bugged_item_df = bugged_item_df._append(row1 ,ignore_index=True)
            bugged_item_df = bugged_item_df._append(row2 ,ignore_index=True)
            bugged_item_2df = bugged_item_2df._append(row1,ignore_index=True)
            #donot add row 1 to df and add row 1 and row 2 to bugged item list
            
    

bugged_item_df.to_csv("bugged.csv", index=False)
print('here')
clean_item_df = combined_df_3.merge(bugged_item_2df, on=['timestamp_utc', 'looted_by__name', 'item_id', 'quantity'], how='left', indicator=True).query('_merge == "left_only"').drop('_merge', axis=1)
clean_item_df.to_csv("clean.csv", index=False)

if someone knows how to improve it beyond 30 secs feel free to add another way

6

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật