My goal is to load a pre-trained Hugging Face model, train it, save it, and then load it. Here are the steps that I took:
Loading the Model
from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments, DataCollatorWithPadding
import numpy as np
# load model
model = AutoModelForSequenceClassification.from_pretrained(
"gpt2",
num_labels=6,
id2label=id2label,
label2id=label2id,
)
# unfreeze params
for param in model.parameters():
param.requires_grad = True
# get tokenizer
tokenizer = AutoTokenizer.from_pretrained("gpt2")
# tokenize data
tokenized_ds = {}
for split in ["train", "test"]:
tokenized_ds[split] = ds[split].map(
lambda x: tokenizer(x["text"], truncation=True),
batched=True,
)
# define an eos token for the tokenizer and model (for padding purposes)
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = tokenizer.pad_token_id
# define an accuracy metric
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
return {"accuracy": (predictions == labels).mean()}
PEFTing
from peft import TaskType, LoraConfig, get_peft_model
# create a peft config
config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=['c_attn', 'c_proj'],
lora_dropout=0.1,
bias="none",
fan_in_fan_out=True,
task_type=TaskType.SEQ_CLS
)
# create lora model
lora_model = get_peft_model(model, config)
lora_model.print_trainable_parameters()
# unfreeze params
for param in lora_model.parameters():
param.requires_grad = True
# train model
trainer = Trainer(
model=lora_model,
args=TrainingArguments(
output_dir="./data/lora_peft",
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
evaluation_strategy="epoch",
save_strategy="epoch",
num_train_epochs=1,
weight_decay=0.01,
load_best_model_at_end=True,
),
train_dataset=tokenized_ds["train"].rename_column('label', 'labels'),
eval_dataset=tokenized_ds["test"].rename_column('label', 'labels'),
tokenizer=tokenizer,
data_collator=DataCollatorWithPadding(tokenizer=tokenizer),
compute_metrics=compute_metrics,
)
trainer.train()
Saving and Loading (Problem Area)
# save weights to 'gpt-lora'
lora_model.save_pretrained("gpt-lora")
from peft import AutoPeftModelForSequenceClassification
# load and evaluate trained model from 'gpt-lora'
loaded_model = AutoPeftModelForSequenceClassification.from_pretrained("gpt-lora") # <-problem here
The Error
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
Cell In[11], line 4
1 from transformers import AutoModelForSequenceClassification
3 # load and evaluate trained model
----> 4 loaded_model = AutoModelForSequenceClassification.from_pretrained("gpt-lora")
5 trainer.evaluate()
File /opt/conda/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:566, in _BaseAutoModelClass.from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs)
564 elif type(config) in cls._model_mapping.keys():
565 model_class = _get_model_class(config, cls._model_mapping)
--> 566 return model_class.from_pretrained(
567 pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, **kwargs
568 )
569 raise ValueError(
570 f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.n"
571 f"Model type should be one of {', '.join(c.__name__ for c in cls._model_mapping.keys())}."
572 )
File /opt/conda/lib/python3.10/site-packages/transformers/modeling_utils.py:3775, in PreTrainedModel.from_pretrained(cls, pretrained_model_name_or_path, config, cache_dir, ignore_mismatched_sizes, force_download, local_files_only, token, revision, use_safetensors, *model_args, **kwargs)
3772 model = quantizer.post_init_model(model)
3774 if _adapter_model_path is not None:
-> 3775 model.load_adapter(
3776 _adapter_model_path,
3777 adapter_name=adapter_name,
3778 token=token,
3779 adapter_kwargs=adapter_kwargs,
3780 )
3782 if output_loading_info:
3783 if loading_info is None:
File /opt/conda/lib/python3.10/site-packages/transformers/integrations/peft.py:206, in PeftAdapterMixin.load_adapter(self, peft_model_id, adapter_name, revision, token, device_map, max_memory, offload_folder, offload_index, peft_config, adapter_state_dict, adapter_kwargs)
203 processed_adapter_state_dict[new_key] = value
205 # Load state dict
--> 206 incompatible_keys = set_peft_model_state_dict(self, processed_adapter_state_dict, adapter_name)
208 if incompatible_keys is not None:
209 # check only for unexpected keys
210 if hasattr(incompatible_keys, "unexpected_keys") and len(incompatible_keys.unexpected_keys) > 0:
File /opt/conda/lib/python3.10/site-packages/peft/utils/save_and_load.py:135, in set_peft_model_state_dict(model, peft_model_state_dict, adapter_name)
132 else:
133 raise NotImplementedError
--> 135 load_result = model.load_state_dict(peft_model_state_dict, strict=False)
136 if config.is_prompt_learning:
137 model.prompt_encoder[adapter_name].embedding.load_state_dict(
138 {"weight": peft_model_state_dict["prompt_embeddings"]}, strict=True
139 )
File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:2041, in Module.load_state_dict(self, state_dict, strict)
2036 error_msgs.insert(
2037 0, 'Missing key(s) in state_dict: {}. '.format(
2038 ', '.join('"{}"'.format(k) for k in missing_keys)))
2040 if len(error_msgs) > 0:
-> 2041 raise RuntimeError('Error(s) in loading state_dict for {}:nt{}'.format(
2042 self.__class__.__name__, "nt".join(error_msgs)))
2043 return _IncompatibleKeys(missing_keys, unexpected_keys)
RuntimeError: Error(s) in loading state_dict for GPT2ForSequenceClassification:
size mismatch for score.weight: copying a param with shape torch.Size([6, 768]) from checkpoint, the shape in current model is torch.Size([2, 768]).
I keep getting a pytorch size mismatch somewhere in the process. The model seems to save properly.. Just for reference this is the result of saving the model (the first line of code provided above) gpt-lora/adapter_config.json
:
{
“auto_mapping”: null,
“base_model_name_or_path”: “gpt2”,
“bias”: “none”,
“fan_in_fan_out”: true,
“inference_mode”: true,
“init_lora_weights”: true,
“layers_pattern”: null,
“layers_to_transform”: null,
“lora_alpha”: 32,
“lora_dropout”: 0.1,
“modules_to_save”: null,
“peft_type”: “LORA”,
“r”: 8,
“revision”: null,
“target_modules”: [
“c_attn”,
“c_proj”
],
“task_type”: “SEQ_CLS”
}
Alex W. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.