finding annulated ring systems and identifying them, as well as larger aromatic systems

currently I am working on a code that is able to identify some chemical groups, rings and selectively if the rings are aromatic or not. However there seems to be a problem once I want to analyze annulated ring systems like sterone (C1CCC2C(C1)CCC3C2CCC4C3CCC4
) and larger aromatic systems like naphtalene or indole.
I know that the problem for the annulated rings comes from the part, that uses the length and multiplies it to not identify each carbon as one ‘x_membered_ring’. And when using indole it finds an aromatic_6_memebred rings and a 9_membered one. How could I solve this issue so that the molecule can correctly identify all ring sytsem, while finding all unique ones and don’t prints doubles? I have added some examples like Linagliptin (CC1=C(C(=O)C2=CC=CC=C2C1=O)C/C=C(C)/CCCC@HCCCC@HCCCC(C)C) (aromaticity, annulated rings) as well as Irinotecan (CCC1=C2CN3C(=CC4=C(C3=O)COC(=O)[C@@]4(CC)O)C2=NC5=C1C=C(C=C5)OC(=O)N6CCC(CC6)N7CCCCC7) , Adamantane (C1C2CC3CC1CC(C2)C3) and Alpha-Hopan (CC(C)[C@H]1CC[C@]2([C@@H]1CC[C@@]3([C@@H]2CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CCCC5(C)C)C)C)C)C). Does someone have any propositions or advice on how to fix this issue and being able to find all rings and even give information about the annulated rings?

Thanks a lot for the help and support!

#finding chemical functional groups

from rdkit import Chem

def find_smiles_patterns(smiles):
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return “Invalid SMILES string. Unable to parse molecule.”

# Define a list to store the chemical groups found in the SMILES
chemical_groups = []

# SMARTS patterns to recognize chemical groups
smarts_patterns = {
'[C]=[C]': 'Alkene',
'[CX2]#[CX2]': 'Alkyne',
'[CX3]=[CX2]=[CX3]': 'Allene',
'[ClX1][CX4]': 'Alkylchloride',
'[FX1][CX4]': 'Alkylfluoride',
'[BrX1][CX4]': 'Alkylbromide',
'[IX1][CX4]': 'Alkyliodide',
'[OX2H][CX4H2;!$(C([OX2H])[O,S,#7,#15])]': 'Primary_alcohol',
'[OX2H][CX4H;!$(C([OX2H])[O,S,#7,#15])]': 'Secondary_alcohol',
'[OX2H][CX4D4;!$(C([OX2H])[O,S,#7,#15])]': 'Tertiary_alcohol',
'[OX2]([CX4;!$(C([OX2])[O,S,#7,#15,F,Cl,Br,I])])[CX4;!$(C([OX2])[O,S,#7,#15])]': 'Dialkylether',
'[SX2]([CX4;!$(C([OX2])[O,S,#7,#15,F,Cl,Br,I])])[CX4;!$(C([OX2])[O,S,#7,#15])]': 'Dialkylthioether',
'[OX2](c)[CX4;!$(C([OX2])[O,S,#7,#15,F,Cl,Br,I])]': 'Alkylarylether',
'[c][OX2][c]': 'Diarylether',
'[SX2](c)[CX4;!$(C([OX2])[O,S,#7,#15,F,Cl,Br,I])]': 'Alkylarylthioether',
'[c][SX2][c]': 'Diarylthioether',
'[O+;!$([O]~[!#6]);!$([S]*~[#7,#8,#15,#16])]': 'Oxonium',
'[NX3H2+0,NX4H3+;!$([N][!C]);!$([N]*~[#7,#8,#15,#16])]': 'Primary_aliph_amine',
'[NX3H1+0,NX4H2+;!$([N][!C]);!$([N]*~[#7,#8,#15,#16])]': 'Secondary_aliph_amine',
'[NX3H0+0,NX4H1+;!$([N][!C]);!$([N]*~[#7,#8,#15,#16])]': 'Tertiary_aliph_amine',
'[NX4H0+;!$([N][!C]);!$([N]*~[#7,#8,#15,#16])]': 'Quaternary_aliph_ammonium',
'[NX3H2+0,NX4H3+]c': 'Primary_arom_amine',
'[NX3H1+0,NX4H2+;!$([N][!c]);!$([N]*~[#7,#8,#15,#16])]': 'Secondary_arom_amine',
'[NX3H0+0,NX4H1+;!$([N][!c]);!$([N]*~[#7,#8,#15,#16])]': 'Tertiary_arom_amine',
'[NX4H0+;!$([N][!c]);!$([N]*~[#7,#8,#15,#16])]': 'Quaternary_arom_ammonium',
'[NX3H1+0,NX4H2+;$([N]([c])[C]);!$([N]*~[#7,#8,#15,#16])]': 'Secondary_mixed_amine',
'[NX3H0+0,NX4H1+;$([N]([c])([C])[#6]);!$([N]*~[#7,#8,#15,#16])]': 'Tertiary_mixed_amine',
'[NX4H0+;$([N]([c])([C])[#6][#6]);!$([N]*~[#7,#8,#15,#16])]': 'Quaternary_mixed_ammonium',
'[N+;!$([N]~[!#6]);!$(N=*);!$([N]*~[#7,#8,#15,#16])]': 'Ammonium',
'[SX2H][CX4;!$(C([SX2H])~[O,S,#7,#15])]': 'Alkylthiol',
'[SX2]([CX4;!$(C([SX2])[O,S,#7,#15,F,Cl,Br,I])])[CX4;!$(C([SX2])[O,S,#7,#15])]': 'Dialkylthioether',
'[SX2](c)[CX4;!$(C([SX2])[O,S,#7,#15])]': 'Alkylarylthioether',
'[SX2D2][SX2D2]': 'Disulfide',
'[OX2H][OX2]': 'Hydroperoxide',
'[OX2D2][OX2D2]': 'Peroxo',
'[LiX1][#6,#14]': 'Organolithium_compounds',
'[MgX2][#6,#14]': 'Organomagnesium_compounds',
'[!#1;!#5;!#6;!#7;!#8;!#9;!#14;!#15;!#16;!#17;!#33;!#34;!#35;!#52;!#53;!#85]~[#6;!-]': 'Organometallic_compounds',
'[$([CX3H][#6]),$([CX3H2])]=[OX1]': 'Aldehyde',
'[#6]([#6])(=O)[#6]': 'Ketone',
'C=C=O': 'Ketene',
'[$([CX3H][#6]),$([CX3H2])]=[SX1]': 'Thioaldehyde',
'[#6][CX3](=[SX1])[#6]': 'Thioketone',
'C=C=S': 'Thioketene',
'[NX2;$([N][#6]),$([NH]);!$([N][CX3]=[#7,#8,#15,#16])]=[CX3;$([CH2]),$([CH][#6]),$([C]([#6])[#6])]': 'Imine',
'[NX3+;!$([N][!#6]);!$([N][CX3]=[#7,#8,#15,#16])]': 'Immonium',
'[NX2](=[CX3;$([CH2]),$([CH][#6]),$([C]([#6])[#6])])[OX2H]': 'Oxime',
'[NX2](=[CX3;$([CH2]),$([CH][#6]),$([C]([#6])[#6])])[OX2][#6;!$(C=[#7,#8])]' : 'Oximether',
'[OX2]([#6;!$(C=[O,S,N])])[CX4;!$(C(O)(O)[!#6])][OX2][#6;!$(C=[O,S,N])]': 'Acetal',
'[OX2H][CX4;!$(C(O)(O)[!#6])][OX2][#6;!$(C=[O,S,N])]': 'Hemiacetal',
'[NX3v3;!$(NC=[#7,#8,#15,#16])]([#6])[CX4;!$(C(N)(N)[!#6])][NX3v3;!$(NC=[#7,#8,#15,#16])][#6]': 'Aminal',
'[NX3v3;!$(NC=[#7,#8,#15,#16])]([#6])[CX4;!$(C(N)(N)[!#6])][OX2H]': 'Hemiaminal',
'[SX2]([#6;!$(C=[O,S,N])])[CX4;!$(C(S)(S)[!#6])][SX2][#6;!$(C=[O,S,N])]': 'Thioacetal',
'[SX2]([#6;!$(C=[O,S,N])])[CX4;!$(C(S)(S)[!#6])][OX2H]': 'Thiohemiacetal',
'[NX3v3,SX2,OX2;!$(*C=[#7,#8,#15,#16])][CX4;!$(C([N,S,O])([N,S,O])[!#6])][FX1,ClX1,BrX1,IX1]': 'Halogen_acetal_like',
'[NX3v3,SX2,OX2;!$(*C=[#7,#8,#15,#16])][CX4;!$(C([N,S,O])([N,S,O])[!#6])][FX1,ClX1,BrX1,IX1,NX3v3,SX2,OX2;!$(*C=[#7,#8,#15,#16])]': 'Acetal_like',
'[NX3v3,SX2,OX2;$(**=[#7,#8,#15,#16])][CX4;!$(C([N,S,O])([N,S,O])[!#6])][FX1,ClX1,BrX1,IX1]': 'Halogenmethylen_ester_and_similar',
'[NX3v3,SX2,OX2;$(**=[#7,#8,#15,#16])][CX4;!$(C([N,S,O])([N,S,O])[!#6])][NX3v3,SX2,OX2;!$(*C=[#7,#8,#15,#16])]': 'NOS_methylen_ester_and_similar',
'[NX3v3,SX2,OX2;$(**=[#7,#8,#15,#16])][CX4;!$(C([N,S,O])([N,S,O])[!#6])][FX1,ClX1,BrX1,IX1,NX3v3,SX2,OX2;!$(*C=[#7,#8,#15,#16])]': 'Hetero_methylen_ester_and_similar',
'[NX1]#[CX2][CX4;$([CH2]),$([CH]([CX2])[#6]),$(C([CX2])([#6])[#6])][OX2H]': 'Cyanhydrine',
'[ClX1][CX3]=[CX3]': 'Chloroalkene',
'[FX1][CX3]=[CX3]': 'Fluoroalkene',
'[BrX1][CX3]=[CX3]': 'Bromoalkene',
'[IX1][CX3]=[CX3]': 'Iodoalkene',
'[OX2H][CX3;$([H1]),$(C[#6])]=[CX3]': 'Enol',
'[OX2H][CX3;$([H1]),$(C[#6])]=[CX3;$([H1]),$(C[#6])][OX2H]': 'Endiol',
'[OX2]([#6;!$(C=[N,O,S])])[CX3;$([H0][#6]),$([H1])]=[CX3]': 'Enolether',
'[OX2]([CX3]=[OX1])[#6X3;$([#6][#6]),$([H1])]=[#6X3;!$(C[OX2H])]': 'Enolester',
'[NX3;$([NH2][CX3]),$([NH1]([CX3])[#6]),$([N]([CX3])([#6])[#6]);!$([N]*=[#7,#8,#15,#16])][CX3;$([CH]),$([C][#6])]=[CX3]': 'Enamine',
'[SX2H][CX3;$([H1]),$(C[#6])]=[CX3]': 'Thioenol',
'[SX2]([#6;!$(C=[N,O,S])])[CX3;$(C[#6]),$([CH])]=[CX3]': 'Thioenolether',
'[CX3;$([R0][#6]),$([H1R0])](=[OX1])[ClX1]': 'Acylchloride',
'[CX3;$([R0][#6]),$([H1R0])](=[OX1])[FX1]': 'Acylfluoride',
'[CX3;$([R0][#6]),$([H1R0])](=[OX1])[BrX1]': 'Acylbromide',
'[CX3;$([R0][#6]),$([H1R0])](=[OX1])[IX1]': 'Acyliodide',
'[CX3;$([R0][#6]),$([H1R0])](=[OX1])[FX1,ClX1,BrX1,IX1]': 'Acylhalide',
'[CX3;$([R0][#6]),$([H1R0])](=[OX1])[$([OX2H]),$([OX1-])]': 'Carboxylic_acid',
'[CX3;$([R0][#6]),$([H1R0])](=[OX1])[OX2][#6;!$(C=[O,N,S])]': 'Carboxylic_ester',
'[#6][#6X3R](=[OX1])[#8X2][#6;!$(C=[O,N,S])]': 'Lactone',
'[CX3;$([H0][#6]),$([H1])](=[OX1])[#8X2][CX3;$([H0][#6]),$([H1])](=[OX1])': 'Carboxylic_anhydride',
'[CX3;!R;$([C][#6]),$([CH]);$([C](=[OX1])[$([SX2H]),$([SX1-])]),$([C](=[SX1])[$([OX2H]),$([OX1-])])]': 'Carbothioic_acid',
'[CX3;$([R0][#6]),$([H1R0])](=[OX1])[SX2][#6;!$(C=[O,N,S])]': 'Carbothioic_S_ester',
'[#6][#6X3R](=[OX1])[#16X2][#6;!$(C=[O,N,S])]': 'Carbothioic_S_lactone',
'[CX3;$([H0][#6]),$([H1])](=[SX1])[OX2][#6;!$(C=[O,N,S])]': 'Carbothioic_O_ester',
'[#6][#6X3R](=[SX1])[#8X2][#6;!$(C=[O,N,S])]': 'Carbothioic_O_lactone',
'[CX3;$([H0][#6]),$([H1])](=[SX1])[FX1,ClX1,BrX1,IX1]': 'Carbothioic_halide',
'[CX3;!R;$([C][#6]),$([CH]);$([C](=[SX1])[SX2H])]': 'Carbodithioic_acid',
'[CX3;!R;$([C][#6]),$([CH]);$([C](=[SX1])[SX2][#6;!$(C=[O,N,S])])]': 'Carbodithioic_ester',
'[#6][#6X3R](=[SX1])[#16X2][#6;!$(C=[O,N,S])]': 'Carbodithiolactone',
'[CX3](=[OX1])[NX3H1][CX3](=[OX1])[OX2H1]': 'Amide',
'[CX3;$([R0][#6]),$([H1R0])](=[OX1])[NX3H2]': 'Primary_amide',
'[CX3;$([R0][#6]),$([H1R0])](=[OX1])[#7X3H1][#6;!$(C=[O,N,S])]': 'Secondary_amide',
'[CX3;$([R0][#6]),$([H1R0])](=[OX1])[#7X3H0]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])]': 'Tertiary_amide',
'c1cccnc1': 'Pyridine_Derivatives',
'c1cnccn1': 'Pyrazine_derivatives',
'[#6R][#6X3R](=[OX1])[#7X3;$([H1][#6;!$(C=[O,N,S])]),$([H0]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])]': 'Lactam',
'[#6X3;$([H0][#6]),$([H1])](=[OX1])[#7X3H0]([#6])[#6X3;$([H0][#6]),$([H1])](=[OX1])': 'Alkyl_imide',
'[#6X3;$([H0][#6]),$([H1])](=[OX1])[#7X3H0]([!#6])[#6X3;$([H0][#6]),$([H1])](=[OX1])': 'N_hetero_imide',
'[#6X3;$([H0][#6]),$([H1])](=[OX1])[#7X3H1][#6X3;$([H0][#6]),$([H1])](=[OX1])': 'Imide_acidic',
'[$([CX3;!R][#6]),$([CX3H;!R])](=[SX1])[#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])]': 'Thioamide',
'[#6R][#6X3R](=[SX1])[#7X3;$([H1][#6;!$(C=[O,N,S])]),$([H0]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])]': 'Thiolactam',
'[#6X3;$([H0][#6]),$([H1])](=[OX1])[#8X2][#7X2]=,:[#6X3;$([H0]([#6])[#6]),$([H1][#6]),$([H2])]': 'Oximester',
'[NX3;!$(NC=[O,S])][CX3R0;$([H1]),$([H0][#6])]=[NX2;!$(NC=[O,S])]': 'Amidine',
'[CX3;$([H0][#6]),$([H1])](=[OX1])[#7X3;$([H1]),$([H0][#6;!$(C=[O,N,S])])][$([OX2H]),$([OX1-])]': 'Hydroxamic_acid',
'[CX3;$([H0][#6]),$([H1])](=[OX1])[#7X3;$([H1]),$([H0][#6;!$(C=[O,N,S])])][OX2][#6;!$(C=[O,N,S])]': 'Hydroxamic_acid_ester',
'[CX3R0;$([H0][#6]),$([H1])](=[NX2;$([H1]),$([H0][#6;!$(C=[O,N,S])])])[$([OX2H]),$([OX1-])]': 'Imidoacid',
'[#6R][#6X3R](=,:[#7X2;$([H1]),$([H0][#6;!$(C=[O,N,S])])])[$([OX2H]),$([OX1-])]': 'Imidoacid_cyclic',
'[CX3R0;$([H0][#6]),$([H1])](=[NX2;$([H1]),$([H0][#6;!$(C=[O,N,S])])])[OX2][#6;!$(C=[O,N,S])]': 'Imidoester',
'[#6R][#6X3R](=,:[#7X2;$([H1]),$([H0][#6;!$(C=[O,N,S])])])[OX2][#6;!$(C=[O,N,S])]': 'Imidolactone',
'[CX3R0;$([H0][#6]),$([H1])](=[NX2;$([H1]),$([H0][#6;!$(C=[O,N,S])])])[$([SX2H]),$([SX1-])]': 'Imidothioacid',
'[#6R][#6X3R](=,:[#7X2;$([H1]),$([H0][#6;!$(C=[O,N,S])])])[$([OX2H]),$([OX1-])]': 'Imidoacid_cyclic',
'[CX3R0;$([H0][#6]),$([H1])](=[NX2;$([H1]),$([H0][#6;!$(C=[O,N,S])])])[OX2][#6;!$(C=[O,N,S])]': 'Imidoester',
'[#6R][#6X3R](=,:[#7X2;$([H1]),$([H0][#6;!$(C=[O,N,S])])])[OX2][#6;!$(C=[O,N,S])]': 'Imidolactone',
'[CX3R0;$([H0][#6]),$([H1])](=[NX2;$([H1]),$([H0][#6;!$(C=[O,N,S])])])[$([SX2H]),$([SX1-])]': 'Imidothioacid',
'[#6R][#6X3R](=,:[#7X2;$([H1]),$([H0][#6;!$(C=[O,N,S])])])[$([SX2H]),$([SX1-])]': 'Imidothioacid_cyclic',
'[CX3R0;$([H0][#6]),$([H1])](=[NX2;$([H1]),$([H0][#6;!$(C=[O,N,S])])])[SX2][#6;!$(C=[O,N,S])]': 'Imidothioester',
'[#6R][#6X3R](=,:[#7X2;$([H1]),$([H0][#6;!$(C=[O,N,S])])])[SX2][#6;!$(C=[O,N,S])]': 'Imidothiolactone',
'[$([$([#6X3][#6]),$([#6X3H])](=[#7X2v3])[#7X3v3][#7X3v3]),$([$([#6X3][#6]),$([#6X3H])]([#7X3v3])=[#7X2v3][#7X3v3])]': 'Amidrazone',
'[$([#7X3v3;!$(N([#6X3]=[#7X2])C=[O,S])][CX3R0;$([H1]),$([H0][#6])]=[NX2v3;!$(N(=[#6X3][#7X3])C=[O,S])]),$([#7X3v3;!$(N([#6X3]=[#7X2])C=[O,S])][$([CX3R0;$([H1]),$([H0][#6])]=[NX2v3;!$(N(=[#6X3][#7X3])C=[O,S])])])]': 'Amidine',
'[#6][#6X3R;$([H0](=[NX2;!$(N(=[#6X3][#7X3])C=[O,S])])[#7X3;!$(N([#6X3]=[#7X2])C=[O,S])]),$([H0](-[NX3;!$(N([#6X3]=[#7X2])C=[O,S])])=,:[#7X2;!$(N(=[#6X3][#7X3])C=[O,S])])]': 'Imidolactam',
'[CX3R0;$([H0][#6]),$([H1])](=[NX2;$([H1]),$([H0][#6;!$(C=[O,N,S])])])[FX1,ClX1,BrX1,IX1]': 'Imidoylhalide',
'[#6R][#6X3R](=,:[#7X2;$([H1]),$([H0][#6;!$(C=[O,N,S])])])[FX1,ClX1,BrX1,IX1]': 'Imidoylhalide_cyclic',
'[NX3,NX4+;!$([N]~[!#6]);!$([N]*~[#7,#8,#15,#16])][C][CX3](=[OX1])[OX2H,OX1-]': 'Alpha_aminoacid',
'[OX2H][C][CX3](=[OX1])[OX2H,OX1-]': 'Alpha_hydroxyacid',
'[NX3;$([N][CX3](=[OX1])[C][NX3,NX4+])][C][CX3](=[OX1])[NX3;$([N][C][CX3](=[OX1])[NX3,OX2,OX1-])]': 'Peptide_middle',
'[NX3;$([N][CX3](=[OX1])[C][NX3,NX4+])][C][CX3](=[OX1])[OX2H,OX1-]': 'Peptide_C_term',
'[NX3,NX4+;!$([N]~[!#6]);!$([N]*~[#7,#8,#15,#16])][C][CX3](=[OX1])[NX3;$([N][C][CX3](=[OX1])[NX3,OX2,OX1-])]': 'Peptide_N_term',
'[#6][OX2][CX4;$(C[#6]),$([CH])]([OX2][#6])[OX2][#6]': 'Carboxylic_orthoester',
'[CX3]=[CX2]=[OX1]': 'Ketene',
'[#7X2,#8X3,#16X2;$(*[#6,#14])][#6X3]([#7X2,#8X3,#16X2;$(*[#6,#14])])=[#6X3]': 'Ketenacetal',
'[NX1]#[CX2]': 'Nitrile',
'[CX1-]#[NX2+]': 'Isonitrile',
'[#6;!$(C=[O,N,S])][#8X2][#6X3](=[OX1])[#8X2][#6;!$(C=[O,N,S])]': 'Carbonic_acid_dieester',
'[#6;!$(C=[O,N,S])][OX2;!R][CX3](=[OX1])[OX2][FX1,ClX1,BrX1,IX1]': 'Carbonic_acid_esterhalide',
'[#6;!$(C=[O,N,S])][OX2;!R][CX3](=[OX1])[$([OX2H]),$([OX1-])]': 'Carbonic_acid_monoester',
'[#6;!$(C=[O,N,S])][#8X2][#6X3](=[SX1])[#8X2][#6;!$(C=[O,N,S])]': 'Thiocarbonic_acid_dieester',
'[#6;!$(C=[O,N,S])][OX2;!R][CX3](=[SX1])[OX2][FX1,ClX1,BrX1,IX1]': 'Thiocarbonic_acid_esterhalide',
'[#6;!$(C=[O,N,S])][OX2;!R][CX3](=[SX1])[$([OX2H]),$([OX1-])]': 'Thiocarbonic_acid_monoester',
'[#7X3;!$([#7][!#6])][#6X3](=[OX1])[#7X3;!$([#7][!#6])]': 'Urea',
'[#7X3;!$([#7][!#6])][#6X3](=[SX1])[#7X3;!$([#7][!#6])]': 'Thiourea',
'[#7X2;!$([#7][!#6])]=,:[#6X3]([#8X2&!$([#8][!#6]),OX1-])[#7X3;!$([#7][!#6])]': 'Isourea',
'[#7X2;!$([#7][!#6])]=,:[#6X3]([#16X2&!$([#16][!#6]),SX1-])[#7X3;!$([#7][!#6])]': 'Isothiourea',
'[N;v3X3,v4X4+][CX3](=[N;v3X2,v4X3+])[N;v3X3,v4X4+]': 'Guanidine_Derivative',
'[NX3]C(=[OX1])[O;X2H,X1-]': 'Carbaminic_acid',
'[#7X3][#6](=[OX1])[#8X2][#6]': 'Urethan',
'[#7X3][#6](=[OX1])[#7X3][#6](=[OX1])[#7X3]': 'Biuret',
'[#7X3][#7X3][#6X3]([#7X3;!$([#7][#7])])=[OX1]': 'Semicarbazide',
'[#7X3][#7X3][#6X3]([#7X3][#7X3])=[OX1]': 'Carbazide',
'[#7X2](=[#6])[#7X3][#6X3]([#7X3;!$([#7][#7])])=[OX1]': 'Semicarbazone',
'[#7X2](=[#6])[#7X3][#6X3]([#7X3][#7X3])=[OX1]': 'Carbazone',
'[#7X3][#7X3][#6X3]([#7X3;!$([#7][#7])])=[SX1]': 'Thiosemicarbazide',
'[#7X3][#7X3][#6X3]([#7X3][#7X3])=[SX1]': 'Thiocarbazide',
'[#7X2](=[#6])[#7X3][#6X3]([#7X3;!$([#7][#7])])=[SX1]': 'Thiosemicarbazone',
'[#7X2](=[#6])[#7X3][#6X3]([#7X3][#7X3])=[SX1]': 'Thiocarbazone',
'[NX2]=[CX2]=[OX1]': 'Isocyanate',
'[OX2][CX2]#[NX1]': 'Cyanate',
'[NX2]=[CX2]=[SX1]': 'Isothiocyanate',
'[SX2][CX2]#[NX1]': 'Thiocyanate',
'[NX2]=[CX2]=[NX2]': 'Carbodiimide',
'[CX4H0]([O,S,#7])([O,S,#7])([O,S,#7])[O,S,#7,F,Cl,Br,I]': 'Orthocarbonic_derivatives',
'[OX2H][c]': 'Phenol',
'[OX2H][c][c][OX2H]': '1,2-Diphenol',
'[Cl][c]': 'Arylchloride',
'[F][c]': 'Arylfluoride',
'[Br][c]': 'Arylbromide',
'[I][c]': 'Aryliodide',
'[SX2H][c]': 'Arylthiol',
'[c]=[NX2;$([H1]),$([H0][#6;!$([C]=[N,S,O])])]': 'Iminoarene',
'[c]=[OX1]': 'Oxoarene',
'[c]=[SX1]': 'Thioarene',
'[nX3H1+0]': 'Hetero_N_basic_H',
'[nX3H0+0]': 'Hetero_N_basic_no_H',
'[nX2,nX3+]': 'Hetero_N_nonbasic',
'[o]': 'Hetero_O',
'[sX2]': 'Hetero_S',
'[a;!c]': 'Heteroaromatic',
'[!#6;!R0]': 'Heterocylcic',
'[NX2](=[OX1])[O;$([X2]),$([X1-])]': 'Nitrite',
'[SX2][NX2]=[OX1]': 'Thionitrite',
'[$([NX3](=[OX1])(=[OX1])[O;$([X2]),$([X1-])]),$([NX3+]([OX1-])(=[OX1])[O;$([X2]),$([X1-])])]': 'Nitrate',
'[$([NX3](=O)=O),$([NX3+](=O)[O-])][!#8]': 'Nitro',
'[NX2](=[OX1])[!#7;!#8]': 'Nitroso',
'[NX1]~[NX2]~[NX2,NX1]': 'Azide',
'[CX3](=[OX1])[NX2]~[NX2]~[NX1]': 'Acylazide',
'[$([#6]=[NX2+]=[NX1-]),$([#6-]-[NX2+]#[NX1])]': 'Diazo',
'[#6][NX2+]#[NX1]': 'Diazonium',
'[#7;!$(N*=O)][NX2]=[OX1]': 'Nitrosamine',
'[NX2](=[OX1])N-*=O': 'Nitrosamide',
'[$([#7+][OX1-]),$([#7v5]=[OX1]);!$([#7](~[O])~[O]);!$([#7]=[#7])]': 'N-Oxide',
'[NX3;$([H2]),$([H1][#6]),$([H0]([#6])[#6]);!$(NC=[O,N,S])][NX3;$([H2]),$([H1][#6]),$([H0]([#6])[#6]);!$(NC=[O,N,S])]': 'Hydrazine',
'[NX3;$([H2]),$([H1][#6]),$([H0]([#6])[#6]);!$(NC=[O,N,S])][NX2]=[#6]': 'Hydrazone',
'[NX3;$([H2]),$([H1][#6]),$([H0]([#6])[#6]);!$(NC=[O,N,S])][OX2;$([H1]),$(O[#6;!$(C=[N,O,S])])]': 'Hydroxylamine',
'[SX2][NX2]=[OX1]': 'Thionitrite',
'[SX4](=[OX1])(=[OX1])([$([OX2H]),$([OX1-])])[$([OX2H]),$([OX1-])]': 'Sulfuric_acid',
'[SX4](=[OX1])(=[OX1])([$([OX2H]),$([OX1-])])[OX2][#6;!$(C=[O,N,S])]': 'Sulfuric_monoester',
'[SX4](=[OX1])(=[OX1])([OX2][#6;!$(C=[O,N,S])])[OX2][#6;!$(C=[O,N,S])]': 'Sulfuric_diester',
'[SX4](=[OX1])(=[OX1])([#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])])[$([OX2H]),$([OX1-])]': 'Sulfuric_monoamide',
'[SX4](=[OX1])(=[OX1])([#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])])[#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])]': 'Sulfuric_diamide',
'[SX4](=[OX1])(=[OX1])([#7X3][#6;!$(C=[O,N,S])])[OX2][#6;!$(C=[O,N,S])]': 'Sulfuric_esteramide',
'[SX4D4](=[!#6])(=[!#6])([!#6])[!#6]': 'Sulfuric_derivative',
'[SX4;$([H1]),$([H0][#6])](=[OX1])(=[OX1])[$([OX2H]),$([OX1-])]': 'Sulfonic_acid',
'[SX4;$([H1]),$([H0][#6])](=[OX1])(=[OX1])[#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])]': 'Sulfonamide',
'[SX4;$([H1]),$([H0][#6])](=[OX1])(=[OX1])[OX2][#6;!$(C=[O,N,S])]': 'Sulfonic_ester',
'[SX4;$([H1]),$([H0][#6])](=[OX1])(=[OX1])[FX1,ClX1,BrX1,IX1]': 'Sulfonic_halide',
'[SX4;$([H1]),$([H0][#6])](=[!#6])(=[!#6])[!#6]': 'Sulfonic_derivative',
'[SX3;$([H1]),$([H0][#6])](=[OX1])[$([OX2H]),$([OX1-])]': 'Sulfinic_acid',
'[SX3;$([H1]),$([H0][#6])](=[OX1])[#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])]': 'Sulfinic_amide',
'[SX3;$([H1]),$([H0][#6])](=[OX1])[OX2][#6;!$(C=[O,N,S])]': 'Sulfinic_ester',
'[SX3;$([H1]),$([H0][#6])](=[OX1])[FX1,ClX1,BrX1,IX1]': 'Sulfinic_halide',
'[SX3;$([H1]),$([H0][#6])](=[!#6])[!#6]': 'Sulfinic_derivative',
'[SX2;$([H1]),$([H0][#6])][$([OX2H]),$([OX1-])]': 'Sulfenic_acid',
'[SX2;$([H1]),$([H0][#6])][#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])]': 'Sulfenic_amide',
'[SX2;$([H1]),$([H0][#6])][OX2][#6;!$(C=[O,N,S])]': 'Sulfenic_ester',
'[SX2;$([H1]),$([H0][#6])][FX1,ClX1,BrX1,IX1]': 'Sulfenic_halide',
'[SX2;$([H1]),$([H0][#6])][!#6]': 'Sulfenic_derivative',
'[PX4D4](=[OX1])([$([OX2H]),$([OX1-])])([$([OX2H]),$([OX1-])])[$([OX2H]),$([OX1-])]': 'Phosphoric_acid',
'[PX4D4](=[OX1])([$([OX2H]),$([OX1-])])([$([OX2H]),$([OX1-])])[OX2][#6;!$(C=[O,N,S])]' : 'Phosphoric_monoester',
'[PX4D4](=[OX1])([$([OX2H]),$([OX1-])])([OX2][#6;!$(C=[O,N,S])])[OX2][#6;!$(C=[O,N,S])]' : 'Phosphoric_diester',
'[PX4D4](=[OX1])([OX2][#6;!$(C=[O,N,S])])([OX2][#6;!$(C=[O,N,S])])[OX2][#6;!$(C=[O,N,S])]' : 'Phosphoric_triester',
'[PX4D4](=[OX1])([$([OX2H]),$([OX1-])])([$([OX2H]),$([OX1-])])[#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])]' : 'Phosphoric_monoamide',
'[PX4D4](=[OX1])([$([OX2H]),$([OX1-])])([#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])])[#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])]' : 'Phosphoric_diamide',
'[PX4D4](=[OX1])([#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])])([#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])])[#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])]' : 'Phosphoric_triamide',
'[PX4D4](=[OX1])([$([OX2H]),$([OX1-])])([OX2][#6;!$(C=[O,N,S])])[#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])]' : 'Phosphoric_monoestermonoamide',
'[PX4D4](=[OX1])([OX2][#6;!$(C=[O,N,S])])([OX2][#6;!$(C=[O,N,S])])[#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])]' : 'Phosphoric_diestermonoamide',
'[PX4D4](=[OX1])([OX2][#6;!$(C=[O,N,S])])([#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])])[#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])]' : 'Phosphoric_monoesterdiamide',
'[PX4D4](=[!#6])([!#6])([!#6])[!#6]' : 'Phosphoric_acid_derivative',
'[PX4;$([H2]),$([H1][#6]),$([H0]([#6])[#6])](=[OX1])[$([OX2H]),$([OX1-])]': 'Phosphinic_acid',
'[PX4;$([H2]),$([H1][#6]),$([H0]([#6])[#6])](=[OX1])[OX2][#6;!$(C=[O,N,S])]' : 'Phosphinic_ester',
'[PX4;$([H2]),$([H1][#6]),$([H0]([#6])[#6])](=[OX1])[#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])]' : 'Phosphinic_amide',
'[PX4;$([H2]),$([H1][#6]),$([H0]([#6])[#6])](=[!#6])[!#6]' : 'Phosphinic_acid_derivative',
'[PX3;$([H1]),$([H0][#6])]([$([OX2H]),$([OX1-])])[$([OX2H]),$([OX1-])]' : 'Phosphonous_acid',
'[PX3;$([H1]),$([H0][#6])]([$([OX2H]),$([OX1-])])[OX2][#6;!$(C=[O,N,S])]' : 'Phosphonous_monoester',
'[PX3;$([H1]),$([H0][#6])]([OX2][#6;!$(C=[O,N,S])])[OX2][#6;!$(C=[O,N,S])]' : 'Phosphonous_diester',
'[PX3;$([H1]),$([H0][#6])]([$([OX2H]),$([OX1-])])[#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])]' : 'Phosphonous_monoamide',
'[PX3;$([H1]),$([H0][#6])]([#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])])[#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])]' : 'Phosphonous_diamide',
'[PX3;$([H1]),$([H0][#6])]([OX2][#6;!$(C=[O,N,S])])[#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])]' : 'Phosphonous_esteramide',
'[PX3;$([D2]),$([D3][#6])]([!#6])[!#6]' : 'Phosphonous_derivatives',
'[PX3;$([H2]),$([H1][#6]),$([H0]([#6])[#6])][$([OX2H]),$([OX1-])]' : 'Phosphinous_acid',
'[PX3;$([H2]),$([H1][#6]),$([H0]([#6])[#6])][OX2][#6;!$(C=[O,N,S])]' : 'Phosphinous_ester',
'[PX3;$([H2]),$([H1][#6]),$([H0]([#6])[#6])][#7X3;$([H2]),$([H1][#6;!$(C=[O,N,S])]),$([#7]([#6;!$(C=[O,N,S])])[#6;!$(C=[O,N,S])])]' : 'Phosphinous_amide',
'[PX3;$([H2]),$([H1][#6]),$([H0]([#6])[#6])][!#6]' : 'Phosphinous_derivatives',
'[SiX4]([#6])([#6])([#6])[#6]': 'Quart_silane',
'[SiX4;$([H1]([#6])([#6])[#6]),$([H2]([#6])[#6]),$([H3][#6]),$([H4])]': 'Non-quart_silane',
'[SiX4]([FX1,ClX1,BrX1,IX1])([#6])([#6])[#6]': 'Silylmonohalide',
'[SiX4]([!#6])([#6])([#6])[#6]': 'Het_trialkylsilane',
'[SiX4]([!#6])([!#6])([#6])[#6]': 'Dihet_dialkylsilane',
'[SiX4]([!#6])([!#6])([!#6])[#6]': 'Trihet_alkylsilane',
'[SiX4]([!#6])([!#6])([!#6])[!#6]': 'Silicic_acid_derivative',
'[BX3]([#6])([#6])[#6]': 'Trialkylborane',
'[BX3]([!#6])([!#6])[!#6]': 'Boric_acid_derivatives',
'[BX3]([!#6])([!#6])[!#6]': 'Boronic_acid_derivative',
'[BH1,BH2,BH3,BH4]': 'Borohydride',
'[BX4]': 'Quaternary_boron',
'[!#6;!R0]': 'Heterocyclic',
'[OX2r3]1[#6r3][#6r3]1': 'Epoxide',
'[NX3H1r3]1[#6r3][#6r3]1': 'NH_aziridine',
'[D4R;$(*(@*)(@*)(@*)@*)]': 'Spiro',
'[R;$(*(@*)(@*)@*);!$([R2;$(*(@*)(@*)(@*)@*)])]@[R;$(*(@*)(@*)@*);!$([R2;$(*(@*)(@*)(@*)@*)])]' : 'Annulated_rings',
'[R;$(*(@*)(@*)@*);!$([D4R;$(*(@*)(@*)(@*)@*)]);!$([R;$(*(@*)(@*)@*);!$([R2;$(*(@*)(@*)(@*)@*)])]@[R;$(*(@*)(@*)@*);!$([R2;$(*(@*)(@*)(@*)@*)])])]' : 'Bridged_rings',
'[OX2;$([r5]1@C@C@C(O)@C1),$([r6]1@C@C@C(O)@C(O)@C1)]': 'Sugar_pattern_1',
'[OX2;$([r5]1@C(!@[OX2,NX3,SX2,FX1,ClX1,BrX1,IX1])@C@C@C1),$([r6]1@C(!@[OX2,NX3,SX2,FX1,ClX1,BrX1,IX1])@C@C@C@C1)]': 'Sugar_pattern_2',
'[OX2;$([r5]1@C(!@[OX2,NX3,SX2,FX1,ClX1,BrX1,IX1])@C@C(O)@C1),$([r6]1@C(!@[OX2,NX3,SX2,FX1,ClX1,BrX1,IX1])@C@C(O)@C(O)@C1)]': 'Sugar_pattern_combi',
'[OX2;$([r5]1@C(!@[OX2H1])@C@C@C1),$([r6]1@C(!@[OX2H1])@C@C@C@C1)]': 'Sugar_pattern_2_reducing',
'[OX2;$([r5]1@[C@@](!@[OX2,NX3,SX2,FX1,ClX1,BrX1,IX1])@C@C@C1),$([r6]1@[C@@](!@[OX2,NX3,SX2,FX1,ClX1,BrX1,IX1])@C@C@C@C1)]': 'Sugar_pattern_2_alpha',
'[OX2;$([r5]1@[C@](!@[OX2,NX3,SX2,FX1,ClX1,BrX1,IX1])@C@C@C1),$([r6]1@[C@](!@[OX2,NX3,SX2,FX1,ClX1,BrX1,IX1])@C@C@C@C1)]': 'Sugar_pattern_2_beta',
'*#*[*]=,#,:[*]': 'Conjugated_tripple_bond',
'[$(*=O),$([#16,#14,#5]),$([#7]([#6]=[OX1]))][#8X2][$(*=O),$([#16,#14,#5]),$([#7]([#6]=[OX1]))]': 'Mixed_anhydrides',
'[FX1,ClX1,BrX1,IX1][!#6]': 'Halogen_on_hetero',
'[F,Cl,Br,I;!$([X1]);!$([X0-])]': 'Halogen_multi_subst',
'[F][c1ccccc1]': 'Fluoride_benzyl',
'[Cl][c1ccccc1]': 'Chloride_benzyl',
'[Br][c1ccccc1]': 'Bromide_benzyl',
'[I][c1ccccc1]': 'Iodine_benzyl',
'C1C2CC3CC1CC(C2)C3': 'Adamantane_Derivative',
'C1CCC2C(C1)CCC3C2CCC4C3CCC4': 'Sterone_Derivative',
}

# Dictionary to store matches for each chemical group
matches_dict = {name: [] for name in smarts_patterns.values()}

# Iterate over each SMARTS pattern and find matches in the molecule
for pattern, name in smarts_patterns.items():
    matches = mol.GetSubstructMatches(Chem.MolFromSmarts(pattern))
    if matches:
        matches_dict[name].extend(matches)

# Keep track of unique matches for each chemical group
unique_matches = set()
for matches in matches_dict.values():
    for match in matches:
        unique_matches.add(tuple(match))

# Convert unique matches back to a list of chemical groups
for name, matches in matches_dict.items():
    for match in matches:
        if tuple(match) in unique_matches:
            chemical_groups.append(name)
            unique_matches.remove(tuple(match))

# Return the list of identified chemical groups
return chemical_groups

#finding non aromatic rings, doesn’t work for annulated rings
from rdkit import Chem

def find_unique_non_aromatic_rings(smiles):
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return “Invalid SMILES string. Unable to parse molecule.”

# Define SMARTS patterns to recognize rings of specific sizes
ring_smarts = {
    '3_membered_ring': '[r3]',
    '4_membered_ring': '[r4]',
    '5_membered_ring': '[r5]',
    '6_membered_ring': '[r6]',
    '7_membered_ring': '[r7]',
    '8_membered_ring': '[r8]',
    '9_membered_ring': '[r9]',
    '10_membered_ring': '[r10]',
}

# Define a list to store the chemical groups found in the SMILES
chemical_groups = []

# Find matches of each ring pattern in the molecule
for name, pattern in ring_smarts.items():
    ring_size = int(name.split('_')[0])  # Extract the ring size from the name
    ring_matches = mol.GetSubstructMatches(Chem.MolFromSmarts(pattern))
    non_aromatic_rings = [match for match in ring_matches if not any(mol.GetAtomWithIdx(idx).GetIsAromatic() for idx in match)] #exclude all aromatic rings
    unique_rings_count = len(non_aromatic_rings) // ring_size  # Correctly count unique rings
    if unique_rings_count > 0:
        chemical_groups.extend([name] * unique_rings_count)

# Return the list of identified chemical groups
return chemical_groups

#finding aromatic rings
from rdkit import Chem

def find_aromatic_ring(smiles):
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return “Invalid SMILES string. Unable to parse molecule.”

# Define SMARTS patterns to recognize aromatic rings of specific sizes
aromatic_ring_smarts = {
    '3_membered_aromatic_ring': '[a]1[a][a]1',
    '4_membered_aromatic_ring': '[a]1[a][a][a]1',
    '5_membered_aromatic_ring': '[a]1[a][a][a][a]1',
    '6_membered_aromatic_ring': '[a]1[a][a][a][a][a]1',
    '7_membered_aromatic_ring': '[a]1[a][a][a][a][a][a]1',
    '8_membered_aromatic_ring': '[a]1[a][a][a][a][a][a][a]1',
    '9_membered_aromatic_ring': '[a]1[a][a][a][a][a][a][a][a]1',
    '10_membered_aromatic_ring': '[a]1[a][a][a][a][a][a][a][a][a]1',
    'naphthalene': '[a]1[a][a][a]2[a][a][a][a][a]2[a]1',
    #other larger systems...
}

# Define a list to store the chemical groups found in the SMILES
chemical_groups = []

# Find matches of each aromatic ring pattern in the molecule
for name, pattern in aromatic_ring_smarts.items():
    pattern_mol = Chem.MolFromSmarts(pattern)
    if pattern_mol:
        matches = mol.GetSubstructMatches(pattern_mol)
        for match in matches:
            ring_size = len(match)
            if all(mol.GetAtomWithIdx(idx).GetIsAromatic() for idx in match):
                chemical_groups.append(f'{ring_size}_membered_aromatic_ring')

return chemical_groups

# Example usage
smiles_string = 'C1CCC2C(C1)CCC3C2CCC4C3CCC4'
chemical_groups_found = find_smiles_patterns(smiles_string)
unique_ring_matches = find_unique_non_aromatic_rings(smiles_string)
aromatic_ring_matches = find_aromatic_ring(smiles_string)
print("Chemical groups found:", chemical_groups_found)
print("Non-aromatic rings found:", unique_ring_matches)
print("Aromatic rings found:", aromatic_ring_matches)

New contributor

Cedric Baerlocher is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật