Epoch 1/3 ^C – model.fit() was terminated with this line and without any error

I’m developing a U_Net Model for Segmentation. My Train dataset shape is
[{'image', [32, 128, 128, 2]}; {'detection', [32, 128, 128, 2]}]

such that { 'image', [number of MRI slices, height, width, len(['T2W', 'ADC'])] } { 'detection', [number of MRI slices, height, width, number of classes ] }.

I run this command:

!python .../Codes/train.py 
--TRAIN_OBJ 'lesion' 
--NUM_EPOCHS 3 
--FOCAL_LOSS_ALPHA 0.3 0.7 
--NAME .../Codes/RUN1 
--TRAIN_XLSX_PREFIX .../Dataset_QIN/TrainFold3Dreduced 
--VALID_XLSX_PREFIX .../Dataset_QIN/ValidFold3Dreduced

Such that “train.py” is as below:

# %%
from __future__ import unicode_literals
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
import SimpleITK as sitk
import os
from os.path import join
import numpy as np
import scipy.ndimage
import time
from datetime import datetime
import cv2
import argparse
import json
import pandas as pd
from skimage.measure import regionprops
from scipy.stats import entropy
from shutil import copyfile, rmtree
import tensorflow as tf
import model.losses as losses
from model.augmentations import augment_tensors
import model.unets as unets
from callbacks import WeightsSaver, PCaDetectionValidation, AnatomySegmentationValidation,
                      ResumeTraining, ReduceLR_Schedule
from data_generators import custom_data_generator
from misc import setup_device, print_overview
import warnings
import multiprocessing
import pydicom as dicom
import keras
warnings.filterwarnings('ignore', '.*output shape of zoom.*')


# %%
# Command Line Arguments for Hyperparameters and I/O Paths
prsr = argparse.ArgumentParser(description='Command Line Arguments for Training Script')
#--------------------------------------------------------------------------------------------------
# Dataset Definition 
prsr.add_argument('--TRAIN_OBJ',                  type=str,   default='zonal',                                                             help="Training Objective: 'zonal'/'lesion'")
prsr.add_argument('--NAME',                       type=str,   default='ZPX_P',                                                             help='Path to Load/Store Model Weights and Performance Metrics')
prsr.add_argument('--NUM_EPOCHS',                 type=int,   default=150,                                                                 help="Number of Training Epochs")
prsr.add_argument('--FOLDS',                      type=int,   default=[0,1,2,3,4],                                              nargs='+', help="Folds Selected For Training")
prsr.add_argument('--TRAIN_XLSX_PREFIX',          type=str,   default='ProstateX_train-fold-',                                             help="Path+Prefix to Training Fold Files")
prsr.add_argument('--VALID_XLSX_PREFIX',          type=str,   default='ProstateX_valid-fold-',                                             help="Path+Prefix to Validation Fold Files")
prsr.add_argument('--WEIGHTS_DIR',                type=str,   default='experiments',                                                       help="Path to Load/Store Model Weights")
prsr.add_argument('--METRICS_DIR',                type=str,   default='experiments',                                                       help="Path to Load/Store Performance Metrics")
prsr.add_argument('--USE_PRETRAINED_WEIGHTS',     type=str,   default=False,                                                               help="Path to Pretrained Weights or 'False' (Optional)")
prsr.add_argument('--FREEZE_LAYERS',              type=int,   default=9999,                                                                help="Freeze First N Layers when (USE_PRETRAINED_WEIGHTS!=9999) [e.g. 184]")
prsr.add_argument('--WEIGHTS_MIN_EPOCH',          type=int,   default=130,                                                                 help="Minimum Epoch to Start Exporting Weights")
prsr.add_argument('--VALIDATE_PER_N_EPOCHS',      type=int,   default=5,                                                                   help="Validate Model Performance Every N Epochs")
prsr.add_argument('--STORE_WEIGHTS_PER_N_EPOCHS', type=int,   default=5,                                                                   help="Store Weights Every N Epochs")
prsr.add_argument('--WEIGHTS_OVERWRITE',          type=int,   default=0,                                                                   help="Store All Weights or Most Recent One")
prsr.add_argument('--VALIDATE_MIN_EPOCH',         type=int,   default=0,                                                                   help="Minimum Epoch to Start Validation")
prsr.add_argument('--SHOW_SUMMARY',               type=int,   default=0,                                                                   help="Display Overview")
prsr.add_argument('--RESUME_TRAIN',               type=int,   default=1,                                                                   help="Enable Resume Training (Experimental)")
prsr.add_argument('--CACHE_TDS_PATH',             type=str,   default=None,                                                                help="Path to TensorFlow Data Cache for Faster I/O or 'False' (Optional)")
prsr.add_argument('--GPU_DEVICE_IDs',             type=str,   default="0",                                                                 help="Number of GPUs Available for Computation")
#--------------------------------------------------------------------------------------------------
# U-Net Hyperparameters
prsr.add_argument('--UNET_DEEP_SUPERVISION',      type=int,   default=0,                                                          help="U-Net: Enable Deep Supervision")
prsr.add_argument('--UNET_PROBABILISTIC',         type=int,   default=0,                                                          help="U-Net: Enable Probabilistic/Bayesian Output Computation")
prsr.add_argument('--UNET_PROBA_EVENT_SHAPE',     type=int,   default=256,                                                        help="U-Net: Probabilistic Latent Distribution Size")
prsr.add_argument('--UNET_PROBA_ITER',            type=int,   default=1,                                                          help="U-Net: Iterations of Probabilistic Inference During Validation")
prsr.add_argument('--UNET_FEATURE_CHANNELS',      type=int,   default=[32,64,128,256,512],                             nargs='+', help="U-Net: Encoder/Decoder Channels")
prsr.add_argument('--UNET_STRIDES',               type=int,   default=[(1,1,1),(1,2,2),(1,2,2),(2,2,2),(2,2,2)],       nargs='+', help="U-Net: Down/Upsampling Factor per Resolution")
prsr.add_argument('--UNET_KERNEL_SIZES',          type=int,   default=[(1,3,3),(1,3,3),(3,3,3),(3,3,3),(3,3,3)],       nargs='+', help="U-Net: Convolution Kernel Sizes")
prsr.add_argument('--UNET_ATT_SUBSAMP',           type=int,   default=[(1,1,1),(1,1,1),(1,1,1),(1,1,1)],               nargs='+', help="U-Net: Attention Gate Subsampling Factor")
prsr.add_argument('--UNET_SE_REDUCTION',          type=int,   default=[8,8,8,8,8],                                     nargs='+', help="U-Net: Squeeze-and-Excitation Reduction Ratio")
prsr.add_argument('--UNET_KERNEL_REGULARIZER_L2', type=float, default=1e-5,                                                       help="U-Net: L2 Kernel Regularizer (Contributes to Total Loss at Train-Time)")
prsr.add_argument('--UNET_BIAS_REGULARIZER_L2',   type=float, default=1e-5,                                                       help="U-Net: L2 Bias Regularizer (Contributes to Total Loss at Train-Time)")
prsr.add_argument('--UNET_DROPOUT_MODE',          type=str,   default="monte-carlo",                                              help="U-Net: Dropout Mode: 'standard'/'monte-carlo'")
prsr.add_argument('--UNET_DROPOUT_RATE',          type=float, default=0.33,                                                       help="U-Net: Dropout Regularization Rate")
#--------------------------------------------------------------------------------------------------
# Training Hyperparameters
prsr.add_argument('--BATCH_SIZE',          type=int,   default=1,                                                                 help="Batch Size")
prsr.add_argument('--BASE_LR',             type=float, default=1e-3,                                                              help="Base Learning Rate")
prsr.add_argument('--LR_MODE',             type=str,   default="CALR",                                                            help="Learning Rate Mode: 'CLR'/'CALR'")
prsr.add_argument('--CALR_PARAMS',         type=float, default=[2.00, 1.00, 1e-3],                                    nargs='+',  help="'CosineDecayRestarts': t_mul, m_mul, alpha")
prsr.add_argument('--CLR_PARAMS',          type=float, default=[5e-5, 1.00, 1.25],                                                help="'CyclicLR': Max LR, Decay Factor, Step Factor")
prsr.add_argument('--OPTIMIZER',           type=str,   default="adam",                                                            help="Optimizer: 'adam'/'momentum'")
prsr.add_argument('--LOSS_MODE',           type=str,   default="distribution_focal",                                              help="Loss: 'distribution_focal'/'region_boundary'")
prsr.add_argument('--FOCAL_LOSS_ALPHA',    type=float, default=[0.05, 0.3, 0.65],                                    nargs='+',  help="Focal Loss (alpha)")
prsr.add_argument('--FOCAL_LOSS_GAMMA',    type=float, default=0,                                                                 help="Focal Loss (gamma). Note: When gamma=0; FL reduces down to CE/BCE.")
prsr.add_argument('--DSC_BD_LOSS_WEIGHTS', type=float, default=[0.50, 0.50],                                                      help="Soft Dice + Boundary Loss (weights)")
prsr.add_argument('--ELBO_LOSS_PARAMS',    type=float, default=[1.0],                                                             help="Evidence Lower Bound Loss for Prob Dist. (weight)")
prsr.add_argument('--AUGM_PARAMS',         type=float, default=[0.8, 0.25, 0.15, 10.0, True, 1.20, 0.10, 0.025, True,[0.5,1.5]], help="Train-Time Augmentations (M_PROB,TX_PROB,TRANS,ROT,HFLIP,SCALE,
                                                                                                                                                                  NOISE,C_SHIFT,POOR_QUAL,GAMMA)")

#--------------------------------------------------------------------------------------------------
args, _ = prsr.parse_known_args()

# print(args)


CODE_BASE = os.path.abspath('/content/drive/MyDrive/MasterThesis/ProstateMR_USSL/Datasets.')
args.WEIGHTS_DIR = join(CODE_BASE, args.WEIGHTS_DIR)
args.METRICS_DIR = join(CODE_BASE, args.METRICS_DIR)

           
# For Each Fold
for f in args.FOLDS:
  start_time = datetime.now()
  # Verify Whether Training Had Completed (Yes -> Jump to Next Fold; No -> Resume/Restart Training)
  if os.path.isfile(join(args.WEIGHTS_DIR, args.NAME, 'weights_f{}_{}.h5'.format(str(f), str({args.NUM_EPOCHS})))): continue
  else:                                                                                              pass
  #------------------------------------------------------------------------------------------------
  # Dataset Definition
  TRAIN_XLSX         =  join(CODE_BASE, 'data_feed', args.TRAIN_XLSX_PREFIX+str(f)+'.xlsx')            # Paths to Training Scans/Labels
  TRAIN_DATA_SAMPLES =  len(pd.read_excel(TRAIN_XLSX)['image_path'])                               # Number of Training Samples
  VALID_XLSX         =  join(CODE_BASE, 'data_feed', args.VALID_XLSX_PREFIX+str(f)+'.xlsx')        # Paths to Training Scans/Labels
  VALID_DATA_SAMPLES =  len(pd.read_excel(VALID_XLSX)['image_path'])                               # Number of Training Samples
  #------------------------------------------------------------------------------------------------
  # Cosine Annealing Learning Rate (Cosine Decay w/ Warm Restarts)
  if (args.LR_MODE=='CALR'):
    BASE_LR = (tf.keras.optimizers.schedules.CosineDecayRestarts(
              initial_learning_rate=args.BASE_LR, first_decay_steps=int(np.ceil(((TRAIN_DATA_SAMPLES)/args.BATCH_SIZE)))*args.NUM_EPOCHS,
              t_mul=args.CALR_PARAMS[0], m_mul=args.CALR_PARAMS[1], alpha=args.CALR_PARAMS[2]))
    print('CALR parameters', args.BASE_LR, args.CALR_PARAMS)


  # Optimizer Setup
  if   (args.OPTIMIZER=='adam'):     OPTIMIZER_SET = tf.keras.optimizers.Adam(learning_rate=BASE_LR, amsgrad=True)
  elif (args.OPTIMIZER=='momentum'): OPTIMIZER_SET = tf.keras.optimizers.SGD(learning_rate=BASE_LR,  nesterov=True, momentum=0.90)

  # Segmentation/Detection Loss Function Setup
  if   (args.LOSS_MODE=='distribution_focal'): LOSSES = [losses.Focal(alpha=args.FOCAL_LOSS_ALPHA, gamma=args.FOCAL_LOSS_GAMMA).loss]
  elif (args.LOSS_MODE=='region_boundary'):    LOSSES = [losses.SoftDicePlusBoundarySurface(loss_weights=args.DSC_BD_LOSS_WEIGHTS).loss]
  LOSS_WEIGHTS    = [1.00]

  # Loss Function for Probabilistic Setup
  if bool(args.UNET_PROBABILISTIC):
    LOSSES       +=  [losses.EvidenceLowerBound().loss]
    LOSS_WEIGHTS +=  [ELBO_LOSS_PARAMS[0]]
  #------------------------------------------------------------------------------------------------
  # Load Python Data Generators
  print("Loading Training + Validation Data into RAM...")
  # Define Channel Set
  CHANNEL_SET = ['Apparent Diffusion Coefficient', 'T2 Weighted Axial']
  train_data_gen = custom_data_generator(data_xlsx=TRAIN_XLSX, channel_set=CHANNEL_SET, train_obj=args.TRAIN_OBJ, probabilistic=bool(args.UNET_PROBABILISTIC))
  valid_data_gen = custom_data_generator(data_xlsx=VALID_XLSX, channel_set=CHANNEL_SET, train_obj=args.TRAIN_OBJ, probabilistic=bool(args.UNET_PROBABILISTIC))
  train_metrics  = custom_data_generator(data_xlsx=TRAIN_XLSX, channel_set=CHANNEL_SET, train_obj=args.TRAIN_OBJ, probabilistic=bool(args.UNET_PROBABILISTIC))
  print("Complete.")
  #------------------------------------------------------------------------------------------------
  #Assert Input Dimensions and Data Types via TensorFlow Datasets
  IMAGE_SPATIAL_SHAPE     = dicom.dcmread(pd.read_excel(TRAIN_XLSX)['image_path'][0]).pixel_array.shape            #  Spatial Dimensions of Input MRI (D,H,W)
  DETECTION_SPATIAL_SHAPE = dicom.dcmread(pd.read_excel(TRAIN_XLSX)['label_path'][0]).pixel_array.shape

  IMAGE_SPATIAL_DIMS = len(IMAGE_SPATIAL_SHAPE)
  IMAGE_NUM_CHANNELS = (2 if args.TRAIN_OBJ=='lesion' else 1)                                                       # 'lesion':{T2W,ADC}, 'zonal':{T2W}
  NUM_CLASSES        = (2 if args.TRAIN_OBJ=='lesion' else 3)                                                       # 'lesion':{BG,csPCa},'zonal':{WG,TZ,PZ}

  if ((args.LOSS_MODE)=='distribution_focal')&(len(args.FOCAL_LOSS_ALPHA)!=NUM_CLASSES):
      raise Exception("Number of Class Weights Declared in Loss Function != Number of Classes in Labels/Loss Objective")

  if bool(args.UNET_PROBABILISTIC): IMAGE_NUM_CHANNELS += NUM_CLASSES-1

  if bool(args.UNET_PROBABILISTIC):
      EXPECTED_IO_TYPE  = ({"image":     tf.float32},
                            {"detection": tf.float32,
                            "KL":        tf.float32})
      EXPECTED_IO_SHAPE = ({"image":     (IMAGE_SPATIAL_DIMS + (IMAGE_NUM_CHANNELS,))},
                            {"detection": (IMAGE_SPATIAL_DIMS + (NUM_CLASSES,)),
                            "KL":         IMAGE_SPATIAL_DIMS + (NUM_CLASSES,)})
  else:
      EXPECTED_IO_TYPE  = ({"image":     tf.float32},
                            {"detection": tf.float32})
      EXPECTED_IO_SHAPE = ({"image":     tf.TensorSpec(shape=IMAGE_SPATIAL_SHAPE    +(IMAGE_NUM_CHANNELS,), dtype=tf.float32)},
                            {"detection": tf.TensorSpec(shape=(int(DETECTION_SPATIAL_SHAPE[0]/4), DETECTION_SPATIAL_SHAPE[1], DETECTION_SPATIAL_SHAPE[2])+(NUM_CLASSES,)       , dtype=tf.float32)})
  #------------------------------------------------------------------------------------------------
  #TensorFlow GPU Handling + Datasets
  devices, num_devices         = setup_device(args.GPU_DEVICE_IDs)
  if (num_devices>1): strategy = tf.distribute.MirroredStrategy(devices).scope()
  else:               strategy = tf.device(devices)
  assert np.mod(args.BATCH_SIZE, num_devices)==0, 'Batch size (%d) should be a multiple of the number of GPUs (%d).'%(BATCH_SIZE, num_devices)
  print("GPU Device(s):", devices)

  #Switch I/O to TensorFlow Datasets
  print("Switching I/O to TensorFlow Datasets...")
  train_gen     = tf.data.Dataset.from_generator(lambda:train_data_gen, output_signature=EXPECTED_IO_SHAPE)       # Initialize TensorFlow Dataset
  if str(args.CACHE_TDS_PATH)!='None':
      train_gen = train_gen.cache(filename=(None if str(args.CACHE_TDS_PATH)=='None' else args.CACHE_TDS_PATH))            # Cache Dataset on Remote Server

  # #Graph Mode: Disable Eager Execution and Enable  @tf.function
  # train_gen = train_gen.map(lambda x,y: augment_tensors(x,y,AUGM_PARAMS,True,TRAIN_OBJ))

  #Eager Mode: Enable Eager Execution  and Disable @tf.function
  for data in train_gen.take(1):

    features            = data[0]
    targets             = data[1]

    tf.print("Before augmentation - features shape:", str(tf.shape(features['image'])))
    tf.print("Before augmentation - targets  shape:", str(tf.shape(targets['detection'])))

    features_new, targets_new = augment_tensors(features, targets, args.AUGM_PARAMS, True, args.TRAIN_OBJ)

    train_gen   = train_gen.map(lambda  x, y : (features_new, targets_new))
  
  train_gen     = train_gen.shuffle(args.BATCH_SIZE*8)                                                           # Shuffle Samples
  train_gen     = train_gen.batch(args.BATCH_SIZE)                                                               # Load Data in Batches
  train_gen     = train_gen.prefetch(buffer_size=tf.data.AUTOTUNE)                                               # Prefetch Data via CPU while GPU is Training

  print("Complete.")
  #------------------------------------------------------------------------------------------------
  # Model Training/Validation
  with strategy:
      # U-Net Definition
      unet_model = unets.networks.M1(input_spatial_shape = IMAGE_SPATIAL_SHAPE,
                                    input_channels       = IMAGE_NUM_CHANNELS,
                                    num_classes          = NUM_CLASSES,
                                    filters              = args.UNET_FEATURE_CHANNELS,
                                    dropout_rate         = args.UNET_DROPOUT_RATE,
                                    strides              = args.UNET_STRIDES,
                                    kernel_sizes         = args.UNET_KERNEL_SIZES,
                                    dropout_mode         = args.UNET_DROPOUT_MODE,
                                    se_reduction         = args.UNET_SE_REDUCTION,
                                    att_sub_samp         = args.UNET_ATT_SUBSAMP,
                                    probabilistic        = bool(args.UNET_PROBABILISTIC),
                                    proba_event_shape    = args.UNET_PROBA_EVENT_SHAPE,
                                    deep_supervision     = bool(args.UNET_DEEP_SUPERVISION),
                                    summary              = bool(args.SHOW_SUMMARY),
                                    bias_initializer     = tf.keras.initializers.TruncatedNormal(mean=0.0, stddev=0.001, seed=8),
                                    bias_regularizer     = tf.keras.regularizers.l2(args.UNET_BIAS_REGULARIZER_L2),
                                    kernel_initializer   = tf.keras.initializers.Orthogonal(gain=1.0, seed=8),
                                    kernel_regularizer   = tf.keras.regularizers.l2(args.UNET_KERNEL_REGULARIZER_L2))

      # Display Number of Layers and Definition of Frozen Layers (If Any)
      print("Number of Model Layers: ", len(unet_model.layers))
      if args.FREEZE_LAYERS!=9999:
          for layer in unet_model.layers[:args.FREEZE_LAYERS]: layer.trainable = False
          print("Trainable Layers: ", len(unet_model.layers)-args.FREEZE_LAYERS)
          for layer in unet_model.layers:
              if layer.trainable==True: print(layer, layer.trainable)

      # Load Pre-Trained Weights
      if str(args.USE_PRETRAINED_WEIGHTS)!='False':
        print('Loading pretrained weights from:', join(CODE_BASE, args.USE_PRETRAINED_WEIGHTS))
        unet_model = unets.networks.M1.load(path=join(CODE_BASE, args.USE_PRETRAINED_WEIGHTS))

      # Restart/Resume Training
      if bool(args.RESUME_TRAIN):
        if not os.path.exists(join(args.WEIGHTS_DIR, args.NAME,'f'+str(f))):
          os.makedirs(join(args.WEIGHTS_DIR, args.NAME,'f'+str(f)))
        unet_model, init_epoch = ResumeTraining(model=unet_model, weights_dir=join(args.WEIGHTS_DIR, args.NAME,'/f'+str(f)))
      else:
        init_epoch             = 0
        if os.path.exists(join(args.WEIGHTS_DIR, args.NAME,'f'+str(f))):
          raise Exception("Target Folder Already Exists! Either Remove It or Enable 'RESUME_TRAIN'.")
        else: os.makedirs(join(args.WEIGHTS_DIR, args.NAME,'f'+str(f)))

      # Compile Model w/ Hyperparameters, Optimizer, Loss Functions
      unet_model.compile(optimizer=OPTIMIZER_SET, loss=LOSSES, loss_weights=LOSS_WEIGHTS) #, run_eagerly=True

      # Callbacks: Export Weights, Validate Model, Learning Rate Schedule
      callbacks  = [WeightsSaver(unet_model,
                              weights_overwrite    =  bool(args.WEIGHTS_OVERWRITE),
                              weights_dir          =  join(args.WEIGHTS_DIR, args.NAME,'f'+str(f)),
                              min_epoch            =  args.WEIGHTS_MIN_EPOCH,
                              weights_num_epochs   =  args.STORE_WEIGHTS_PER_N_EPOCHS,
                              init_epoch           =  init_epoch)]
      if (args.TRAIN_OBJ=='zonal'):
        callbacks += [AnatomySegmentationValidation(unet_model,
                              generators           = [train_metrics, valid_data_gen],
                              min_epoch            =  args.VALIDATE_MIN_EPOCH,
                              every_n_epochs       =  args.VALIDATE_PER_N_EPOCHS,
                              num_samples          = [TRAIN_DATA_SAMPLES, VALID_DATA_SAMPLES],
                              init_epoch           =  init_epoch,
                              export_metrics       =  join(args.METRICS_DIR, args.NAME,'f'+str(f)),
                              probabilistic        =  bool(args.UNET_PROBABILISTIC),
                              mc_dropout           = (args.UNET_DROPOUT_MODE=='monte-carlo'),
                              prob_iterations      =  args.UNET_PROBA_ITER)]
      if (args.TRAIN_OBJ=='lesion'):
        callbacks += [PCaDetectionValidation(unet_model,
                              generators           = [train_metrics, valid_data_gen],
                              min_epoch            = args.VALIDATE_MIN_EPOCH,
                              every_n_epochs       = args.VALIDATE_PER_N_EPOCHS,
                              num_samples          = [TRAIN_DATA_SAMPLES, VALID_DATA_SAMPLES],
                              init_epoch           = init_epoch,
                              export_metrics       = join(args.METRICS_DIR, args.NAME,'f'+str(f)),
                              probabilistic        = bool( args.UNET_PROBABILISTIC),
                              mc_dropout           = (args.UNET_DROPOUT_MODE=='monte-carlo'),
                              prob_iterations      = args.UNET_PROBA_ITER)]
      if (args.LR_MODE=='CLR'):
        callbacks += [CyclicLR(mode                = 'exp_range',
                              max_lr               =  args.CLR_PARAMS[1],
                              gamma                =  args.CLR_PARAMS[2],
                              base_lr              =  BASE_LR,
                              step_size            = (round(TRAIN_SAMPLES)//args.BATCH_SIZE)*args.CLR_PARAMS[3])]
      
      # Train Model
      keras.utils.plot_model(unet_model, show_shapes=True)
      print()
      history = unet_model.fit(x                =  train_gen,
                            epochs              =  args.NUM_EPOCHS,
                            steps_per_epoch     =  int(np.ceil(((TRAIN_DATA_SAMPLES)/args.BATCH_SIZE))),
                            initial_epoch       =  init_epoch,
                            verbose             =  2,
                            callbacks           =  callbacks,
                            use_multiprocessing =  True)


  print('Fold {} Duration: {}'.format(str(f), datetime.now() - start_time))
  print(30*'#')
  print(30*'#')
  print(30*'#')
  #------------------------------------------------------------------------------------------------
# %%

I got this output

2024-08-11 11:44:36.451369: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
2024-08-11 11:44:36.451424: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
2024-08-11 11:44:36.452376: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2024-08-11 11:44:36.457771: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-08-11 11:44:37.474092: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
/usr/local/lib/python3.10/dist-packages/tensorflow_addons/utils/tfa_eol_msg.py:23: UserWarning: 

TensorFlow Addons (TFA) has ended development and introduction of new features.
TFA has entered a minimal maintenance and release mode until a planned end of life in May 2024.
Please modify downstream libraries to take dependencies from other repositories in our TensorFlow community (e.g. Keras, Keras-CV, and Keras-NLP). 

For more information see: https://github.com/tensorflow/addons/issues/2807 

  warnings.warn(
Namespace(TRAIN_OBJ='lesion', NAME='/content/drive/MyDrive/MasterThesis/ProstateMR_USSL/Codes/RUN1', NUM_EPOCHS=3, FOLDS=[0, 1, 2, 3, 4], TRAIN_XLSX_PREFIX='/content/drive/MyDrive/MasterThesis/ProstateMR_USSL/Dataset_QIN/TrainFold3Dreduced', VALID_XLSX_PREFIX='/content/drive/MyDrive/MasterThesis/ProstateMR_USSL/Dataset_QIN/ValidFold3Dreduced', WEIGHTS_DIR='experiments', METRICS_DIR='experiments', USE_PRETRAINED_WEIGHTS=False, FREEZE_LAYERS=9999, WEIGHTS_MIN_EPOCH=130, VALIDATE_PER_N_EPOCHS=5, STORE_WEIGHTS_PER_N_EPOCHS=5, WEIGHTS_OVERWRITE=0, VALIDATE_MIN_EPOCH=0, SHOW_SUMMARY=0, RESUME_TRAIN=1, CACHE_TDS_PATH=None, GPU_DEVICE_IDs='0', UNET_DEEP_SUPERVISION=0, UNET_PROBABILISTIC=0, UNET_PROBA_EVENT_SHAPE=256, UNET_PROBA_ITER=1, UNET_FEATURE_CHANNELS=[32, 64, 128, 256, 512], UNET_STRIDES=[(1, 1, 1), (1, 2, 2), (1, 2, 2), (2, 2, 2), (2, 2, 2)], UNET_KERNEL_SIZES=[(1, 3, 3), (1, 3, 3), (3, 3, 3), (3, 3, 3), (3, 3, 3)], UNET_ATT_SUBSAMP=[(1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1)], UNET_SE_REDUCTION=[8, 8, 8, 8, 8], UNET_KERNEL_REGULARIZER_L2=1e-05, UNET_BIAS_REGULARIZER_L2=1e-05, UNET_DROPOUT_MODE='monte-carlo', UNET_DROPOUT_RATE=0.33, BATCH_SIZE=1, BASE_LR=0.001, LR_MODE='CALR', CALR_PARAMS=[2.0, 1.0, 0.001], CLR_PARAMS=[5e-05, 1.0, 1.25], OPTIMIZER='adam', LOSS_MODE='distribution_focal', FOCAL_LOSS_ALPHA=[0.3, 0.7], FOCAL_LOSS_GAMMA=0, DSC_BD_LOSS_WEIGHTS=[0.5, 0.5], ELBO_LOSS_PARAMS=[1.0], AUGM_PARAMS=[0.8, 0.25, 0.15, 10.0, True, 1.2, 0.1, 0.025, True, [0.5, 1.5]])


CALR parameters 0.001 [2.0, 1.0, 0.001]
Loading Training + Validation Data into RAM...
Complete.
GPU Device(s): /gpu:0
Switching I/O to TensorFlow Datasets...
Complete.

m1 Input Shape is : (None, 32, 128, 128, 2)
Input Volume:--------------------------- (None, 32, 128, 128, 2)
Initial Convolutional Layer (Stage 0):-- (None, 32, 128, 128, 32)
Attention Gating: Stage 0:-------------- (None, 32, 128, 128, 32)
Encoder: Stage 1; SE-Residual Block:---- (None, 32, 64, 64, 64)
Attention Gating: Stage 1:-------------- (None, 32, 64, 64, 64)
Encoder: Stage 2; SE-Residual Block:---- (None, 32, 32, 32, 128)
Attention Gating: Stage 2:-------------- (None, 32, 32, 32, 128)
Encoder: Stage 3; SE-Residual Block:---- (None, 16, 16, 16, 256)
Attention Gating: Stage 3:-------------- (None, 16, 16, 16, 256)
Middle: High-Dim Latent Features:------- (None, 8, 8, 8, 512)
Decoder: Stage 3; Nested U-Net:--------- (None, 16, 16, 16, 256)
Decoder: Stage 2; Nested U-Net:--------- (None, 32, 32, 32, 128)
Decoder: Stage 1; Nested U-Net:--------- (None, 32, 64, 64, 64)
Decoder: Stage 0; Nested U-Net:--------- (None, 32, 128, 128, 32)
U-Net [Logits]:------------------------- (None, 32, 128, 128, 2)
Deep Supervision Disabled
Number of Model Layers:  225
Begin Training @ Epoch  0

Epoch 1/3
^C

What is wrong with my code or data and what’s the meaning of “^C” at the end of output?

6

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật