I have code that produces multiple holoviews images and I want to display one at a time and be able to change between them using a DropDown menu. I looked around but do not find a solution for this.
ChatGPT has given me code that does what I want for geoviews figures, but can not reproduce it for my images.
#!/usr/bin/env python3
# plot interactive maps of data
import numpy as np
import sys
import os
from astropy.time import Time
import geoviews as gv
from geoviews import opts as gvopts
import holoviews as hv
from bokeh.io import curdoc
from cartopy import crs
from holoviews.operation.datashader import regrid
from read_nc import read_dir_nc
from outfile import outfile
from merge_data import merge_data
from filter_invalid import filter_invalid
def command_parser(argv):
# defaults
data_path = "Testdata/*.nc"
cnfg_path = "Testdata/config.json"
usage = "usage: %prog [options]"
from optparse import OptionParser
parser = OptionParser(usage=usage)
parser.add_option("-d", "--dpath",
action="store",
type="string",
dest="dpath",
default=data_path,
help="Path of netCDF files to be read, default: %default")
parser.add_option("-c", "--config",
action="store",
type="string",
dest="cpath",
default=cnfg_path,
help="Path of config file to be read, default: %default")
# args contains all non-option arguments
(cdata, args) = parser.parse_args()
return cdata, args
def merc_trans(lon, lat):
"""
transform lat, lon to mercator coordinates
"""
from pyproj import Transformer
wgs84 = "epsg:4326"
wgs84_pseudo_merc = "epsg:3857"
# always_xy -> makes sure that output is (lon,lat)
transformer = Transformer.from_crs(crs_from=wgs84, crs_to=wgs84_pseudo_merc, always_xy=True)
mlon, mlat = transformer.transform(xx=lon, yy=lat)
return mlon, mlat
def prep_plot_data(data, cnfg):
plotdata = dict()
for file in cnfg.keys():
plotdata[file] = dict()
for variable in cnfg[file].keys():
var = data[file]['variables']
if variable not in var.keys():
raise ValueError(f"The file {file} does not contain a variable called {variable}.")
val = var[variable]
val *= cnfg[file][variable]['scale']
lat = var[cnfg[file][variable]['latvar']]
lon = var[cnfg[file][variable]['lonvar']]
if cnfg[file][variable]['numvar'] in var:
N = var[cnfg[file][variable]['numvar']]
else:
N = np.ones_like(val)
plotdata[file][variable] = dict()
plotdata[file][variable]['lat'] = lat
plotdata[file][variable]['lon'] = lon
plotdata[file][variable]['N'] = N
plotdata[file][variable]['value'] = val
return plotdata
def geoviews_map_grid(plotdata, cnfg):
#gv.extension('bokeh')
curdoc().title = 'bokeh application' # sets title of the bokeh document
from get_cpt import get_cmap
from holoviews.operation.datashader import regrid, rasterize, datashade
from geoviews.operation.regrid import weighted_regrid
figure_dict = dict()
for file in plotdata.keys():
figure_dict[file] = dict()
for var in plotdata[file].keys():
config = cnfg[file][var]
val = plotdata[file][var]['value']
lat = plotdata[file][var]['lat']
lon = plotdata[file][var]['lon']
N = plotdata[file][var]['N']
# remove values with to low number of input data
val = np.where(N<config['nmin'], np.nan, val)
# statistics
val_mean = np.nanmean(val)
val_std = np.nanstd(val)
# ranges
vmean = np.floor(val_mean/5)*5.
# auto range
dv = config['dv']
vmin = val_mean - dv
vmax = val_mean + dv
# specific range
if config['zval'][0] != None:
vmin = config['zval'][0]
if config['zval'][1] != None:
vmax = config['zval'][1]
# apply limits
val = np.clip(val, vmin, vmax)
# background
if config['tiles']:
height = 800
width = 1000
# offline tiles | still needs comand option for path
tiles_dir = 'http://localhost:8000/tiles/GoogleTiles/{X}/{Y}/{Z}.png'
tiles = gv.WMTS(tiles_dir).opts(global_extent=True, max_zoom=6)
# need to limit lat range for tiles projection - exclude poles
world_lon1, world_lat1 = merc_trans(config['xmin'], np.max([config['ymin'], -80.]))
world_lon2, world_lat2 = merc_trans(config['xmax'], np.min([config['ymax'], 80.]))
xlim = (world_lon1, world_lon2)
ylim = (world_lat1, world_lat2)
projection = crs.Mercator.GOOGLE
bg_fig = tiles.opts(width=width, height=height,
xlim=xlim, ylim=ylim)
else:
height = 800
width = 1000
xlim = (config['xmin'], config['xmax'])
ylim = (config['ymin'], config['ymax'])
projection = crs.PlateCarree()
gvopts.defaults(gvopts.Image(width=width, height=height,
xlim=xlim, ylim=ylim))
# data
ds = gv.Dataset((lon, lat, val),
['Longitude', 'Latitude'], var)
hv.config.image_rtol = 0.01 # tolerance for lat/lon data
# dynamic could be for time
image = ds.to(gv.Image, ['Longitude', 'Latitude'])#, dynamic=True)
# read color map from file
cmap_file = './' + config['cmap'] + '.cpt'
if os.path.exists(cmap_file):
cmap = get_cmap(cmap_file)
else:
cmap = config['cmap']
image.opts(colorbar=True,
clabel=var+' ('+config['unit']+')',
cmap=cmap,
alpha=0.55,
colorbar_opts={'scale_alpha':0.55},
xlabel='Länge',
ylabel='Breite',
projection=projection,
title=config['title'])
dyn_coast = gv.operation.resample_geometry(
gv.feature.coastline.geoms('10m').opts(color='black'))
dyn_borders = gv.operation.resample_geometry(
gv.feature.borders.geoms('10m').opts(color='black'))
if config['tiles']:
fig = bg_fig * regrid(image) * dyn_coast
else:
fig = regrid(image) * dyn_coast * dyn_borders
figure_dict[file][var] = fig
return figure_dict
def render_images(figures, cnfg):
images = dict()
for file in cnfg.keys():
for var in cnfg[file].keys():
dd_name = cnfg[file][var]['dd_name']
images[dd_name] = figures[file][var]
print(images.keys())
fig = images["CO2 total columns"]
#fig = images['Nitrogendioxide']
#fig = images['CH4 total column']
renderer = gv.renderer('bokeh')
hv.renderer('bokeh').server_doc(fig)])
return
# read & interpret command line
opts, _ = command_parser(sys.argv)
print("Input data path: ", opts.dpath)
print("Input config path: ", opts.cpath)
data, cnfg = read_dir_nc(opts.dpath, opts.cpath)
plotdata = prep_plot_data(data, cnfg)
figures = geoviews_map_grid(plotdata, cnfg)
print(figures.keys())
render_images(figures, cnfg)
This code is capable of producing the images that I want, but can’t change them using a DropDown menu. Does anyone have experience using bokeh?
ChatGPT sugested this:
import numpy as np
from bokeh.io import output_file, show
from bokeh.models import ColumnDataSource, Select, CustomJS, ColorBar, LinearColorMapper
from bokeh.layouts import column
from bokeh.plotting import figure
from bokeh.transform import linear_cmap
from bokeh.palettes import Viridis256
# Function to convert latitude and longitude to Web Mercator format
def wgs84_to_web_mercator(lat, lon):
k = 6378137
x = lon * (k * np.pi/180.0)
y = np.log(np.tan((90 + lat) * np.pi/360.0)) * k
return (x, y)
# Create the dataset dictionary
images = {}
# Create the first dataset as a ColumnDataSource
data1 = {
'latitude': np.random.uniform(low=37.0, high=37.9, size=100),
'longitude': np.random.uniform(low=-122.5, high=-121.5, size=100),
'value': np.random.uniform(low=0, high=100, size=100)
}
data1['x'], data1['y'] = wgs84_to_web_mercator(data1['latitude'], data1['longitude'])
source1 = ColumnDataSource(data1)
images["Geographical Dataset 1"] = source1
# Create the second dataset as a ColumnDataSource
data2 = {
'latitude': np.random.uniform(low=35.0, high=36.0, size=100),
'longitude': np.random.uniform(low=-123.5, high=-122.5, size=100),
'value': np.random.uniform(low=0, high=100, size=100)
}
data2['x'], data2['y'] = wgs84_to_web_mercator(data2['latitude'], data2['longitude'])
source2 = ColumnDataSource(data2)
images["Geographical Dataset 2"] = source2
# Calculate median and standard deviation for dataset 1
median1 = np.median(data1['value'])
std1 = np.std(data1['value'])
low1 = median1 - std1
high1 = median1 + std1
# Calculate median and standard deviation for dataset 2
median2 = np.median(data2['value'])
std2 = np.std(data2['value'])
low2 = median2 - std2
high2 = median2 + std2
# Create color mappers
color_mapper1 = LinearColorMapper(palette=Viridis256, low=low1, high=high1)
color_mapper2 = LinearColorMapper(palette=Viridis256, low=low2, high=high2)
# Create the first figure
p1 = figure(x_axis_type="mercator", y_axis_type="mercator", title="Geographical Dataset 1")
p1.circle(x='x', y='y', size=10, fill_color=linear_cmap('value', Viridis256, low1, high1), fill_alpha=0.8, source=source1)
color_bar1 = ColorBar(color_mapper=color_mapper1, location=(0, 0))
p1.add_layout(color_bar1, 'right')
# Create the second figure
p2 = figure(x_axis_type="mercator", y_axis_type="mercator", title="Geographical Dataset 2")
p2.circle(x='x', y='y', size=10, fill_color=linear_cmap('value', Viridis256, low2, high2), fill_alpha=0.8, source=source2)
color_bar2 = ColorBar(color_mapper=color_mapper2, location=(0, 0))
p2.add_layout(color_bar2, 'right')
# Hide the second plot initially
p2.visible = False
# Create a Select widget
select = Select(title="Select Plot:", value="Geographical Dataset 1", options=["Geographical Dataset 1", "Geographical Dataset 2"])
# Define a CustomJS callback to switch plots
callback = CustomJS(args=dict(p1=p1, p2=p2), code="""
if (cb_obj.value == "Geographical Dataset 1") {
p1.visible = true;
p2.visible = false;
} else {
p1.visible = false;
p2.visible = true;
}
""")
select.js_on_change('value', callback)
# Combine the select widget and plots into a layout
layout = column(select, p1, p2)
# Save the plot to an HTML file and show it
output_file("geographical_datasets_with_dictionary_data.html")
show(layout)
user24681547 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.