Deep NN converging at same cost

I have a deep neural network, and I am trying to use it to classify signed numbers in 64×64 pcitures of numbers from 0-9. The cost seems to always converge around 2.3, which is 10% accuracy or just random.

I tested the nn model on a generated dataset with 20 features and 4 classes, and it seems to work fine in plotting the decision boundaries and having low cost, however when I try it on my dataset, it always converges to 2.3 cost. I have adjusted the learning rate, changed the layer dimensions, and rechecked my nn code. I can’t seem to find where it’s going wrong. I made sure the X and Y npy’s I am pulling from are correct, as well as the right shape.

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>import numpy as np
def initialize_layer_parameters(layer_dims):
parameters = {}
L = len(layer_dims) # number of layers in the network
# Initialize parameters for each layer
for l in range(1, L):
parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.1
parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l - 1]))
assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))
return parameters
def sigmoid(Z):
A = 1 / (1 + np.exp(-Z))
cache = Z
return A, cache
def relu(Z):
A = np.maximum(0, Z)
cache = Z
return A, cache
def softmax(Z):
Z_shifted = Z - np.max(Z, axis=0, keepdims=True) # To prevent overflow
exp_Z = np.exp(Z_shifted)
A = exp_Z / np.sum(exp_Z, axis=0, keepdims=True)
cache = Z
return A, cache
def relu_backward(dA, cache):
Z = cache
dZ = np.array(dA, copy=True)
dZ[Z <= 0] = 0
assert (dZ.shape == Z.shape)
return dZ
def sigmoid_backward(dA, cache):
Z = cache
s = 1/(1+np.exp(-Z))
dZ = dA * s * (1-s)
assert (dZ.shape == Z.shape)
return dZ
def softmax_backward(dAL, cache):
Z = cache
m = Z.shape[1]
dZ = dAL / m
return dZ
def one_hot_encode(Y, num_classes):
Y = np.array(Y).astype(int) # Ensure Y is an array of integers
Y = Y.reshape(-1) # Flatten Y to be a 1D array if needed
if np.any(Y >= num_classes) or np.any(Y < 0):
raise ValueError("Labels must be in the range [0, num_classes-1]")
Y_encoded = np.eye(num_classes)[Y]
return Y_encoded.T
def forward_linear(A, W, b):
Z = np.dot(W, A) + b
cache = (A, W, b)
return Z, cache
def forward_activation(A_prev, W, b, activation):
if activation == "sigmoid":
Z, linear_cache = forward_linear(A_prev, W, b)
A, activation_cache = sigmoid(Z)
elif activation == "relu":
Z, linear_cache = forward_linear(A_prev, W, b)
A, activation_cache = relu(Z)
elif activation == "softmax":
Z, linear_cache = forward_linear(A_prev, W, b)
A, activation_cache = softmax(Z)
else:
raise ValueError("Invalid activation function!")
cache = (linear_cache, activation_cache)
return A, cache
def forward_propagation(X, parameters):
caches = []
A = X
L = len(parameters) // 2 # number of layers in the network
activation = "sigmoid" if classification_type == "binary" else "softmax"
# Forward propagation for each layer
for l in range(1, L):
A_prev = A
A, cache = forward_activation(A_prev, parameters['W' + str(l)], parameters['b' + str(l)], "relu")
caches.append(cache)
#AL is final output layer
AL, cache = forward_activation(A, parameters['W' + str(L)], parameters['b' + str(L)], activation)
caches.append(cache)
return AL, caches
def cost_function(AL, Y):
if classification_type == "binary":
cost = -np.mean(np.multiply(Y, np.log(AL)) + np.multiply((1 - Y), np.log(1 - AL)))
elif classification_type == "multivariable":
epsilon = 1e-8 # Small constant to prevent log(0)
AL = np.clip(AL, epsilon, 1 - epsilon) # Clip AL to avoid log(0) and division by zero
cost = -np.sum(Y * np.log(AL)) / Y.shape[1]
else:
raise ValueError("Invalid classification type!")
return cost
def backward_linear(dZ, cache):
A_prev, W, b = cache
m = A_prev.shape[1]
dW = 1/m * np.dot(dZ, A_prev.T)
db = 1/m * np.sum(dZ, axis=1, keepdims=True)
dA_prev = np.dot(W.T, dZ)
return dA_prev, dW, db
def backward_activation(dA, cache, activation):
linear_cache, activation_cache = cache
if activation == "relu":
dZ = relu_backward(dA, activation_cache)
dA_prev, dW, db = backward_linear(dZ, linear_cache)
elif activation == "sigmoid":
dZ = sigmoid_backward(dA, activation_cache)
dA_prev, dW, db = backward_linear(dZ, linear_cache)
elif activation == "softmax":
dZ = softmax_backward(dA, activation_cache)
dA_prev, dW, db = backward_linear(dZ, linear_cache)
else:
raise ValueError("Invalid activation function!")
return dW, dA_prev, db
def backward_propagation(AL, Y, caches):
grads = {}
L = len(caches)
activation = "sigmoid" if classification_type == "binary" else "softmax"
if activation == "sigmoid":
dAL = -(np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
if activation == "softmax":
dAL = AL - Y
# Gradient descent of output layer
current_cache = caches[L - 1]
dW_temp, dA_prev_temp, db_temp = backward_activation(dAL, current_cache, activation)
grads["dW" + str(L)] = dW_temp
grads["dA" + str(L-1)] = dA_prev_temp
grads["db" + str(L)] = db_temp
# Store gradient descent for remaining layers
for l in reversed(range(L-1)):
dW_temp, dA_prev_temp, db_temp = backward_activation(grads["dA" + str(l+1)], caches[l], "relu")
grads["dW" + str(l + 1)] = dW_temp
grads["dA" + str(l)] = dA_prev_temp
grads["db" + str(l + 1)] = db_temp
return grads
def update_parameters(parameters, grads, learning_rate):
L = len(parameters) // 2 # number of layers in the neural network
# Update each parameter by layer
for l in range(L):
parameters["W" + str(l+1)] -= learning_rate * grads["dW" + str(l+1)]
parameters["b" + str(l+1)] -= learning_rate * grads["db" + str(l+1)]
return parameters
def deep_nn_model(X, Y, num_iterations, layer_dims, learning_rate, classification_method):
costs = []
parameters = initialize_layer_parameters(layer_dims)
global classification_type
classification_type = classification_method
if classification_type == "multivariable":
Y = one_hot_encode(Y, layer_dims[-1])
for i in range(0, num_iterations):
AL, caches = forward_propagation(X, parameters)
cost = cost_function(AL, Y)
grads = backward_propagation(AL, Y, caches)
parameters = update_parameters(parameters, grads, learning_rate)
if i % 100 == 0 or i == num_iterations - 1:
print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))
if i % 100 == 0 or i == num_iterations:
costs.append(cost)
return parameters, costs
# Seperate code running the model
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import sys
import os
import pickle
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from src.deep_nn import forward_propagation, deep_nn_model
X = np.load("datasets/signdigits/X.npy")
Y = np.load("datasets/signdigits/Y.npy")
# Split dataset into some training examples(15%) and shuffle data
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.15, random_state=42)
m_train = X_train.shape[0]
X_train_flat = X_train.reshape(m_train, X_train.shape[1] * X_train.shape[2]).T
Y_train = Y_train[np.newaxis, :]
m_test = X_test.shape[0]
X_test_flat = X_test.reshape(m_test, X_test.shape[1] * X_test.shape[2]).T
Y_test = Y_test[np.newaxis, :]
print(X_train_flat.shape)
print(Y_train.shape)
print(X_test_flat.shape)
print(Y_test.shape)
layer_dims = [4096, 1024, 512, 256, 128, 10]
parameters, _ = deep_nn_model(X_train_flat, Y_train, num_iterations=1000, layer_dims=layer_dims, learning_rate=1, classification_method="multivariable")
def predict(X, parameters):
AL, _ = forward_propagation(X, parameters)
predictions = np.argmax(AL, axis=0)
return predictions
def calculate_accuracy(predictions, labels):
return np.mean(predictions == labels)
with open('model_parameters.pkl', 'wb') as f:
pickle.dump(parameters, f)
train_predictions = predict(X_train_flat, parameters)
train_accuracy = calculate_accuracy(train_predictions, Y_train)
print(f"Training Accuracy: {train_accuracy * 100:.2f}%")
test_predictions = predict(X_test_flat, parameters)
test_accuracy = calculate_accuracy(test_predictions, Y_test)
print(f"Test Accuracy: {test_accuracy * 100:.2f}%")
</code>
<code>import numpy as np def initialize_layer_parameters(layer_dims): parameters = {} L = len(layer_dims) # number of layers in the network # Initialize parameters for each layer for l in range(1, L): parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.1 parameters['b' + str(l)] = np.zeros((layer_dims[l], 1)) assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l - 1])) assert(parameters['b' + str(l)].shape == (layer_dims[l], 1)) return parameters def sigmoid(Z): A = 1 / (1 + np.exp(-Z)) cache = Z return A, cache def relu(Z): A = np.maximum(0, Z) cache = Z return A, cache def softmax(Z): Z_shifted = Z - np.max(Z, axis=0, keepdims=True) # To prevent overflow exp_Z = np.exp(Z_shifted) A = exp_Z / np.sum(exp_Z, axis=0, keepdims=True) cache = Z return A, cache def relu_backward(dA, cache): Z = cache dZ = np.array(dA, copy=True) dZ[Z <= 0] = 0 assert (dZ.shape == Z.shape) return dZ def sigmoid_backward(dA, cache): Z = cache s = 1/(1+np.exp(-Z)) dZ = dA * s * (1-s) assert (dZ.shape == Z.shape) return dZ def softmax_backward(dAL, cache): Z = cache m = Z.shape[1] dZ = dAL / m return dZ def one_hot_encode(Y, num_classes): Y = np.array(Y).astype(int) # Ensure Y is an array of integers Y = Y.reshape(-1) # Flatten Y to be a 1D array if needed if np.any(Y >= num_classes) or np.any(Y < 0): raise ValueError("Labels must be in the range [0, num_classes-1]") Y_encoded = np.eye(num_classes)[Y] return Y_encoded.T def forward_linear(A, W, b): Z = np.dot(W, A) + b cache = (A, W, b) return Z, cache def forward_activation(A_prev, W, b, activation): if activation == "sigmoid": Z, linear_cache = forward_linear(A_prev, W, b) A, activation_cache = sigmoid(Z) elif activation == "relu": Z, linear_cache = forward_linear(A_prev, W, b) A, activation_cache = relu(Z) elif activation == "softmax": Z, linear_cache = forward_linear(A_prev, W, b) A, activation_cache = softmax(Z) else: raise ValueError("Invalid activation function!") cache = (linear_cache, activation_cache) return A, cache def forward_propagation(X, parameters): caches = [] A = X L = len(parameters) // 2 # number of layers in the network activation = "sigmoid" if classification_type == "binary" else "softmax" # Forward propagation for each layer for l in range(1, L): A_prev = A A, cache = forward_activation(A_prev, parameters['W' + str(l)], parameters['b' + str(l)], "relu") caches.append(cache) #AL is final output layer AL, cache = forward_activation(A, parameters['W' + str(L)], parameters['b' + str(L)], activation) caches.append(cache) return AL, caches def cost_function(AL, Y): if classification_type == "binary": cost = -np.mean(np.multiply(Y, np.log(AL)) + np.multiply((1 - Y), np.log(1 - AL))) elif classification_type == "multivariable": epsilon = 1e-8 # Small constant to prevent log(0) AL = np.clip(AL, epsilon, 1 - epsilon) # Clip AL to avoid log(0) and division by zero cost = -np.sum(Y * np.log(AL)) / Y.shape[1] else: raise ValueError("Invalid classification type!") return cost def backward_linear(dZ, cache): A_prev, W, b = cache m = A_prev.shape[1] dW = 1/m * np.dot(dZ, A_prev.T) db = 1/m * np.sum(dZ, axis=1, keepdims=True) dA_prev = np.dot(W.T, dZ) return dA_prev, dW, db def backward_activation(dA, cache, activation): linear_cache, activation_cache = cache if activation == "relu": dZ = relu_backward(dA, activation_cache) dA_prev, dW, db = backward_linear(dZ, linear_cache) elif activation == "sigmoid": dZ = sigmoid_backward(dA, activation_cache) dA_prev, dW, db = backward_linear(dZ, linear_cache) elif activation == "softmax": dZ = softmax_backward(dA, activation_cache) dA_prev, dW, db = backward_linear(dZ, linear_cache) else: raise ValueError("Invalid activation function!") return dW, dA_prev, db def backward_propagation(AL, Y, caches): grads = {} L = len(caches) activation = "sigmoid" if classification_type == "binary" else "softmax" if activation == "sigmoid": dAL = -(np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) if activation == "softmax": dAL = AL - Y # Gradient descent of output layer current_cache = caches[L - 1] dW_temp, dA_prev_temp, db_temp = backward_activation(dAL, current_cache, activation) grads["dW" + str(L)] = dW_temp grads["dA" + str(L-1)] = dA_prev_temp grads["db" + str(L)] = db_temp # Store gradient descent for remaining layers for l in reversed(range(L-1)): dW_temp, dA_prev_temp, db_temp = backward_activation(grads["dA" + str(l+1)], caches[l], "relu") grads["dW" + str(l + 1)] = dW_temp grads["dA" + str(l)] = dA_prev_temp grads["db" + str(l + 1)] = db_temp return grads def update_parameters(parameters, grads, learning_rate): L = len(parameters) // 2 # number of layers in the neural network # Update each parameter by layer for l in range(L): parameters["W" + str(l+1)] -= learning_rate * grads["dW" + str(l+1)] parameters["b" + str(l+1)] -= learning_rate * grads["db" + str(l+1)] return parameters def deep_nn_model(X, Y, num_iterations, layer_dims, learning_rate, classification_method): costs = [] parameters = initialize_layer_parameters(layer_dims) global classification_type classification_type = classification_method if classification_type == "multivariable": Y = one_hot_encode(Y, layer_dims[-1]) for i in range(0, num_iterations): AL, caches = forward_propagation(X, parameters) cost = cost_function(AL, Y) grads = backward_propagation(AL, Y, caches) parameters = update_parameters(parameters, grads, learning_rate) if i % 100 == 0 or i == num_iterations - 1: print("Cost after iteration {}: {}".format(i, np.squeeze(cost))) if i % 100 == 0 or i == num_iterations: costs.append(cost) return parameters, costs # Seperate code running the model import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import sys import os import pickle sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) from src.deep_nn import forward_propagation, deep_nn_model X = np.load("datasets/signdigits/X.npy") Y = np.load("datasets/signdigits/Y.npy") # Split dataset into some training examples(15%) and shuffle data X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.15, random_state=42) m_train = X_train.shape[0] X_train_flat = X_train.reshape(m_train, X_train.shape[1] * X_train.shape[2]).T Y_train = Y_train[np.newaxis, :] m_test = X_test.shape[0] X_test_flat = X_test.reshape(m_test, X_test.shape[1] * X_test.shape[2]).T Y_test = Y_test[np.newaxis, :] print(X_train_flat.shape) print(Y_train.shape) print(X_test_flat.shape) print(Y_test.shape) layer_dims = [4096, 1024, 512, 256, 128, 10] parameters, _ = deep_nn_model(X_train_flat, Y_train, num_iterations=1000, layer_dims=layer_dims, learning_rate=1, classification_method="multivariable") def predict(X, parameters): AL, _ = forward_propagation(X, parameters) predictions = np.argmax(AL, axis=0) return predictions def calculate_accuracy(predictions, labels): return np.mean(predictions == labels) with open('model_parameters.pkl', 'wb') as f: pickle.dump(parameters, f) train_predictions = predict(X_train_flat, parameters) train_accuracy = calculate_accuracy(train_predictions, Y_train) print(f"Training Accuracy: {train_accuracy * 100:.2f}%") test_predictions = predict(X_test_flat, parameters) test_accuracy = calculate_accuracy(test_predictions, Y_test) print(f"Test Accuracy: {test_accuracy * 100:.2f}%") </code>
import numpy as np

def initialize_layer_parameters(layer_dims):
    parameters = {}
    L = len(layer_dims) # number of layers in the network

    # Initialize parameters for each layer
    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.1
        parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
        
        assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l - 1]))
        assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))

    return parameters

def sigmoid(Z):
    A = 1 / (1 + np.exp(-Z))
    cache = Z
    return A, cache

def relu(Z):
    A = np.maximum(0, Z)
    cache = Z
    return A, cache

def softmax(Z):
    Z_shifted = Z - np.max(Z, axis=0, keepdims=True)  # To prevent overflow
    exp_Z = np.exp(Z_shifted)
    A = exp_Z / np.sum(exp_Z, axis=0, keepdims=True)
    cache = Z
    return A, cache

def relu_backward(dA, cache):
    Z = cache
    dZ = np.array(dA, copy=True)
    dZ[Z <= 0] = 0

    assert (dZ.shape == Z.shape)
    
    return dZ

def sigmoid_backward(dA, cache):
    Z = cache
    s = 1/(1+np.exp(-Z))
    dZ = dA * s * (1-s)
    
    assert (dZ.shape == Z.shape)
    
    return dZ

def softmax_backward(dAL, cache):
    Z = cache
    m = Z.shape[1]
    dZ = dAL / m

    return dZ

def one_hot_encode(Y, num_classes):
    Y = np.array(Y).astype(int)  # Ensure Y is an array of integers
    Y = Y.reshape(-1)           # Flatten Y to be a 1D array if needed
    if np.any(Y >= num_classes) or np.any(Y < 0):
        raise ValueError("Labels must be in the range [0, num_classes-1]")
    
    Y_encoded = np.eye(num_classes)[Y]
    return Y_encoded.T

def forward_linear(A, W, b):
    Z = np.dot(W, A) + b
    cache = (A, W, b)

    return Z, cache

def forward_activation(A_prev, W, b, activation):
    if activation == "sigmoid":
        Z, linear_cache = forward_linear(A_prev, W, b)
        A, activation_cache = sigmoid(Z)
    elif activation == "relu":
        Z, linear_cache = forward_linear(A_prev, W, b)
        A, activation_cache = relu(Z)
    elif activation == "softmax":
        Z, linear_cache = forward_linear(A_prev, W, b)
        A, activation_cache = softmax(Z)
    else:
        raise ValueError("Invalid activation function!")

    cache = (linear_cache, activation_cache)

    return A, cache

def forward_propagation(X, parameters):
    caches = []
    A = X
    L = len(parameters) // 2  # number of layers in the network
    activation = "sigmoid" if classification_type == "binary" else "softmax"

    # Forward propagation for each layer
    for l in range(1, L):
        A_prev = A
        A, cache = forward_activation(A_prev, parameters['W' + str(l)], parameters['b' + str(l)], "relu")
        caches.append(cache)

    #AL is final output layer
    AL, cache = forward_activation(A, parameters['W' + str(L)], parameters['b' + str(L)], activation)
    caches.append(cache)

    return AL, caches

def cost_function(AL, Y):
    if classification_type == "binary":
        cost = -np.mean(np.multiply(Y, np.log(AL)) + np.multiply((1 - Y), np.log(1 - AL)))
    elif classification_type == "multivariable":
        epsilon = 1e-8  # Small constant to prevent log(0)
        AL = np.clip(AL, epsilon, 1 - epsilon)  # Clip AL to avoid log(0) and division by zero
        cost = -np.sum(Y * np.log(AL)) / Y.shape[1]  
    else:
        raise ValueError("Invalid classification type!")
    
    return cost

def backward_linear(dZ, cache):
    A_prev, W, b = cache
    m = A_prev.shape[1]

    dW = 1/m * np.dot(dZ, A_prev.T)
    db = 1/m * np.sum(dZ, axis=1, keepdims=True)
    dA_prev = np.dot(W.T, dZ)

    return dA_prev, dW, db

def backward_activation(dA, cache, activation):
    linear_cache, activation_cache = cache

    if activation == "relu":
        dZ = relu_backward(dA, activation_cache)
        dA_prev, dW, db = backward_linear(dZ, linear_cache)
    elif activation == "sigmoid":
        dZ = sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = backward_linear(dZ, linear_cache)
    elif activation == "softmax":
        dZ = softmax_backward(dA, activation_cache)
        dA_prev, dW, db = backward_linear(dZ, linear_cache)
    else:
        raise ValueError("Invalid activation function!")


    return dW, dA_prev, db

def backward_propagation(AL, Y, caches):
    grads = {}
    L = len(caches)
    activation = "sigmoid" if classification_type == "binary" else "softmax"
    
    if activation == "sigmoid":
        dAL = -(np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
    if activation == "softmax":
        dAL = AL - Y

    # Gradient descent of output layer
    current_cache = caches[L - 1]
    dW_temp, dA_prev_temp, db_temp = backward_activation(dAL, current_cache, activation)
    grads["dW" + str(L)] = dW_temp
    grads["dA" + str(L-1)] = dA_prev_temp
    grads["db" + str(L)] = db_temp

    # Store gradient descent for remaining layers
    for l in reversed(range(L-1)):
        dW_temp, dA_prev_temp, db_temp = backward_activation(grads["dA" + str(l+1)], caches[l], "relu")
        grads["dW" + str(l + 1)] = dW_temp
        grads["dA" + str(l)] = dA_prev_temp  
        grads["db" + str(l + 1)] = db_temp

    return grads

def update_parameters(parameters, grads, learning_rate):
    L = len(parameters) // 2 # number of layers in the neural network

    # Update each parameter by layer  
    for l in range(L):
        parameters["W" + str(l+1)] -= learning_rate * grads["dW" + str(l+1)]
        parameters["b" + str(l+1)] -= learning_rate * grads["db" + str(l+1)]
        
    return parameters

def deep_nn_model(X, Y, num_iterations, layer_dims, learning_rate, classification_method):
    costs = []
    parameters = initialize_layer_parameters(layer_dims)
    global classification_type
    classification_type = classification_method

    if classification_type == "multivariable":
        Y = one_hot_encode(Y, layer_dims[-1])

    for i in range(0, num_iterations):
        AL, caches = forward_propagation(X, parameters)
        cost = cost_function(AL, Y)
        grads = backward_propagation(AL, Y, caches)
        parameters = update_parameters(parameters, grads, learning_rate)

        if i % 100 == 0 or i == num_iterations - 1:
            print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))
        if i % 100 == 0 or i == num_iterations:
            costs.append(cost)

    return parameters, costs

# Seperate code running the model

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import sys
import os
import pickle
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from src.deep_nn import forward_propagation, deep_nn_model

X = np.load("datasets/signdigits/X.npy")
Y = np.load("datasets/signdigits/Y.npy")

# Split dataset into some training examples(15%) and shuffle data
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.15, random_state=42)

m_train = X_train.shape[0]
X_train_flat = X_train.reshape(m_train, X_train.shape[1] * X_train.shape[2]).T
Y_train = Y_train[np.newaxis, :]

m_test = X_test.shape[0]
X_test_flat = X_test.reshape(m_test, X_test.shape[1] * X_test.shape[2]).T
Y_test = Y_test[np.newaxis, :]

print(X_train_flat.shape)
print(Y_train.shape)

print(X_test_flat.shape)
print(Y_test.shape)

layer_dims = [4096, 1024, 512, 256, 128, 10]
parameters, _ = deep_nn_model(X_train_flat, Y_train, num_iterations=1000, layer_dims=layer_dims, learning_rate=1, classification_method="multivariable")

def predict(X, parameters):
    AL, _ = forward_propagation(X, parameters)
    predictions = np.argmax(AL, axis=0)  
    return predictions

def calculate_accuracy(predictions, labels):
    return np.mean(predictions == labels)

with open('model_parameters.pkl', 'wb') as f:
    pickle.dump(parameters, f)

train_predictions = predict(X_train_flat, parameters)
train_accuracy = calculate_accuracy(train_predictions, Y_train)
print(f"Training Accuracy: {train_accuracy * 100:.2f}%")

test_predictions = predict(X_test_flat, parameters)
test_accuracy = calculate_accuracy(test_predictions, Y_test)
print(f"Test Accuracy: {test_accuracy * 100:.2f}%")

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật