I’m currently working on building a custom chatbot using a Transformer-based model for a personal project. Despite trying different hyperparameters, adjusting epochs, and increasing my dataset size, I’m encountering issues where the model fails to generate any valid responses based on my datasets.
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset, random_split
import pandas as pd
import math
from transformers import BertTokenizer
# Define the tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# Load the conversational data from a CSV file
def load_conversational_data(file_path):
data = pd.read_csv(file_path)
print("Loaded data:")
print(data.head())
return data['input'].tolist(), data['response'].tolist()
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=50):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads, dropout=0.1):
super(MultiHeadAttention, self).__init__()
assert d_model % num_heads == 0
self.d_head = d_model // num_heads
self.num_heads = num_heads
self.linear_q = nn.Linear(d_model, d_model)
self.linear_k = nn.Linear(d_model, d_model)
self.linear_v = nn.Linear(d_model, d_model)
self.linear_out = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, query, key, value, mask=None):
batch_size = query.size(0)
seq_length = query.size(1)
q = self.linear_q(query)
k = self.linear_k(key)
v = self.linear_v(value)
q = q.view(batch_size, seq_length, self.num_heads, self.d_head).transpose(1, 2)
k = k.view(batch_size, seq_length, self.num_heads, self.d_head).transpose(1, 2)
v = v.view(batch_size, seq_length, self.num_heads, self.d_head).transpose(1, 2)
scores = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(self.d_head)
if mask is not None:
mask = mask.unsqueeze(1).unsqueeze(1)
scores = scores.masked_fill(mask == 0, float('-inf'))
attn_weights = torch.softmax(scores, dim=-1)
attn_weights = self.dropout(attn_weights)
context = torch.matmul(attn_weights, v)
context = context.transpose(1, 2).contiguous().view(batch_size, seq_length, self.num_heads * self.d_head)
output = self.linear_out(context)
return output
class FeedForward(nn.Module):
def __init__(self, d_model, d_ff, dropout=0.1):
super(FeedForward, self).__init__()
self.linear1 = nn.Linear(d_model, d_ff)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(d_ff, d_model)
def forward(self, x):
x = nn.functional.relu(self.linear1(x))
x = self.dropout(x)
x = self.linear2(x)
return x
class TransformerEncoderLayer(nn.Module):
def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
super(TransformerEncoderLayer, self).__init__()
self.self_attn = MultiHeadAttention(d_model, num_heads, dropout)
self.ffn = FeedForward(d_model, d_ff, dropout)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
def forward(self, src, src_mask=None):
src2 = self.norm1(src)
src2 = self.self_attn(src2, src2, src2, src_mask)
src = src + self.dropout1(src2)
src2 = self.norm2(src)
src2 = self.ffn(src2)
src = src + self.dropout2(src2)
return src
class TransformerEncoder(nn.Module):
def __init__(self, num_layers, d_model, num_heads, d_ff, dropout=0.1):
super(TransformerEncoder, self).__init__()
self.layers = nn.ModuleList(
[TransformerEncoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)]
)
def forward(self, src, src_mask=None):
output = src
for layer in self.layers:
output = layer(output, src_mask)
return output
class CustomTransformerModel(nn.Module):
def __init__(self, vocab_size, d_model=128, num_heads=4, num_layers=6, d_ff=256, dropout=0.1):
super(CustomTransformerModel, self).__init__()
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_encoder = PositionalEncoding(d_model, dropout)
self.transformer_encoder = TransformerEncoder(num_layers, d_model, num_heads, d_ff, dropout)
self.fc = nn.Linear(d_model, vocab_size)
self.init_weights()
def init_weights(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, src, src_mask=None):
x = self.embedding(src)
x = self.pos_encoder(x)
x = self.transformer_encoder(x, src_mask)
x = self.fc(x)
return x
# Custom Dataset class
class ConversationDataset(Dataset):
def __init__(self, inputs, responses, tokenizer, max_length=50):
self.inputs = inputs
self.responses = responses
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.inputs)
def __getitem__(self, idx):
input_text = self.inputs[idx]
response_text = self.responses[idx]
input_tokens = self.tokenizer.encode(input_text, add_special_tokens=True, max_length=self.max_length, truncation=True, padding='max_length')
response_tokens = self.tokenizer.encode(response_text, add_special_tokens=True, max_length=self.max_length, truncation=True, padding='max_length')
return torch.tensor(input_tokens), torch.tensor(response_tokens)
# Load and preprocess your real-world dataset here
inputs, responses = load_conversational_data('conversations.csv')
dataset = ConversationDataset(inputs, responses, tokenizer)
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
# Data loaders
batch_size = 14
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
# Instantiate the model
vocab_size = tokenizer.vocab_size
model = CustomTransformerModel(vocab_size)
# Loss and optimizer
loss_fn = nn.CrossEntropyLoss(ignore_index=tokenizer.pad_token_id)
optimizer = optim.AdamW(model.parameters(), lr=0.001)
# Function to generate responses
def generate_response(model, tokenizer, input_text, max_length=50):
model.eval()
try:
# Tokenize the input text
tokens = tokenizer.encode(input_text, add_special_tokens=True, max_length=max_length, truncation=True, padding='max_length')
input_data = torch.tensor([tokens])
input_mask = (input_data != tokenizer.pad_token_id).long()
# Log the tokenized input
print(f"Tokenized input: {tokens}")
with torch.no_grad():
# Forward pass through the model
output = model(input_data)
# Check for NaNs in the output
if torch.sum(torch.isnan(output)) > 0:
print("Error: Model output contains NaNs.")
return "I'm sorry, there was an error in generating the response."
# Get the predicted tokens
output_tokens = torch.argmax(output, dim=-1).squeeze().tolist()
print(f"Output tokens: {output_tokens}")
# Decode the tokens into a string
response = tokenizer.decode(output_tokens, skip_special_tokens=True)
print(f"Generated response: {response}")
if response.strip() == "":
print("Error: Generated response is empty.")
return "I'm sorry, I couldn't generate a valid response."
return response
except Exception as e:
print(f"Exception during response generation: {str(e)}")
return "I'm sorry, an unexpected error occurred."
# Training and validation loop
num_epochs = 10
for epoch in range(num_epochs):
# Training
model.train()
train_loss = 0.0
for input_data, target in train_loader:
optimizer.zero_grad()
input_mask = (input_data != tokenizer.pad_token_id).long()
output = model(input_data, input_mask)
loss = loss_fn(output.view(-1, vocab_size), target.view(-1))
loss.backward()
optimizer.step()
train_loss += loss.item()
avg_train_loss = train_loss / len(train_loader)
# Validation
model.eval()
val_loss = 0.0
with torch.no_grad():
for input_data, target in val_loader:
input_mask = (input_data != tokenizer.pad_token_id).long()
output = model(input_data, input_mask)
loss = loss_fn(output.view(-1, vocab_size), target.view(-1))
val_loss += loss.item()
avg_val_loss = val_loss / len(val_loader)
print(f'Epoch [{epoch+1}/{num_epochs}], Train Loss: {avg_train_loss:.4f}, Val Loss: {avg_val_loss:.4f}')
# Log a sample response from the model
sample_input = "Hello, how are you?"
sample_response = generate_response(model, tokenizer, sample_input)
print(f"Sample input: {sample_input}nSample response: {sample_response}")
# Test the model interactively
while True:
test_input = input("you: ")
if test_input.lower() == 'exit':
break
response = generate_response(model, tokenizer, test_input)
print(f"Input: {test_input}nResponse: {response}")
I’ve experimented with various hyperparameters such as learning rates, batch sizes, and different numbers of training epochs. My expectation was that these adjustments would help improve the quality of responses generated by my Transformer-based model. However, despite increasing the dataset size and refining these parameters, the model continues to produce either repeated tokens or completely empty responses during training and inference.