Creating a ‘for’ or ‘if-else’ selector for checking dynamically sized python List

I’m trying to mask 8752 images with transformers like this

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>from transformers import pipeline
from PIL import Image
import requests
import cv2
import numpy as np
from matplotlib import pyplot as plt
semantic_segmentation_nvidia = pipeline("image-segmentation", "nvidia/segformer-b0-finetuned-ade-512-512")
jpeg_im = None
a = 0
mask_i = 0
f = open("masking_log.txt", "w")
for im in large_image_stack_512:
i=0
while(i == 0):
jpeg_im = Image.open(os.path.join(ROOT_DIR,im))
print(os.path.join(ROOT_DIR,im))
# Semantic segmentation
segmentation = semantic_segmentation_nvidia(jpeg_im)
print("the length of current segmentation labels are: ", len(segmentation))
water_mask_label = segmentation[mask_i]["label"]
print(water_mask_label)
print("here")
if (water_mask_label == "water"):
print("Successful labelling at: ", mask_i)
water_mask = segmentation[mask_i]["mask"]
print("here")
imar = np.asarray(water_mask)
print(water_mask_label)
print("type im (array)", type(imar))
f.write("image " + str(a) + "nsuccess-label at " + str(mask_i) + "nwith dir: " + str(im) + "n with mask labeled as: " + str(water_mask_label) + 'nn')
plt.imsave('D:..Data'+'img_'+str(a)+'.jpg', imar, cmap="gray")
i=1
a+=1
mask_i= 0
semantic_jpeg = None
imar = None
water_mask = None
water_mask_label = None
segmentation = None
water_mask_label = None
else:
print("not water")
if (mask_i < len(segmentation)):
mask_i += 1
else:
f.write("image " + str(a) + "n unsuccess-labelling (has no 'water' label)" + "final mask_i value: " + str(mask_i) + "nwith dir: " + str(im) + "n check later " + + 'nn')
print("masking fails, check later image" + im)
i = 1
continue
#plt.imshow(water_mask)
#plt.show()
#print("type jpeg_im (jpeg)", type(water_mask))
continue
#print(len(cropped))
f.close()
</code>
<code>from transformers import pipeline from PIL import Image import requests import cv2 import numpy as np from matplotlib import pyplot as plt semantic_segmentation_nvidia = pipeline("image-segmentation", "nvidia/segformer-b0-finetuned-ade-512-512") jpeg_im = None a = 0 mask_i = 0 f = open("masking_log.txt", "w") for im in large_image_stack_512: i=0 while(i == 0): jpeg_im = Image.open(os.path.join(ROOT_DIR,im)) print(os.path.join(ROOT_DIR,im)) # Semantic segmentation segmentation = semantic_segmentation_nvidia(jpeg_im) print("the length of current segmentation labels are: ", len(segmentation)) water_mask_label = segmentation[mask_i]["label"] print(water_mask_label) print("here") if (water_mask_label == "water"): print("Successful labelling at: ", mask_i) water_mask = segmentation[mask_i]["mask"] print("here") imar = np.asarray(water_mask) print(water_mask_label) print("type im (array)", type(imar)) f.write("image " + str(a) + "nsuccess-label at " + str(mask_i) + "nwith dir: " + str(im) + "n with mask labeled as: " + str(water_mask_label) + 'nn') plt.imsave('D:..Data'+'img_'+str(a)+'.jpg', imar, cmap="gray") i=1 a+=1 mask_i= 0 semantic_jpeg = None imar = None water_mask = None water_mask_label = None segmentation = None water_mask_label = None else: print("not water") if (mask_i < len(segmentation)): mask_i += 1 else: f.write("image " + str(a) + "n unsuccess-labelling (has no 'water' label)" + "final mask_i value: " + str(mask_i) + "nwith dir: " + str(im) + "n check later " + + 'nn') print("masking fails, check later image" + im) i = 1 continue #plt.imshow(water_mask) #plt.show() #print("type jpeg_im (jpeg)", type(water_mask)) continue #print(len(cropped)) f.close() </code>
from transformers import pipeline
from PIL import Image
import requests
import cv2

import numpy as np
from matplotlib import pyplot as plt


semantic_segmentation_nvidia = pipeline("image-segmentation", "nvidia/segformer-b0-finetuned-ade-512-512")
jpeg_im = None
a = 0
mask_i = 0

f = open("masking_log.txt", "w")


for im in large_image_stack_512:
    i=0 
    while(i == 0):
        
        jpeg_im = Image.open(os.path.join(ROOT_DIR,im))
        print(os.path.join(ROOT_DIR,im))
        # Semantic segmentation
        segmentation = semantic_segmentation_nvidia(jpeg_im)
        print("the length of current segmentation labels are: ", len(segmentation))
        water_mask_label = segmentation[mask_i]["label"]
        print(water_mask_label)
        print("here")    
        if (water_mask_label == "water"):
            print("Successful labelling at: ", mask_i)
            water_mask = segmentation[mask_i]["mask"]
            print("here")
            imar = np.asarray(water_mask)
            print(water_mask_label)
            print("type im (array)", type(imar))
            f.write("image " + str(a) + "nsuccess-label at " + str(mask_i) + "nwith dir: " + str(im)  + "n with mask labeled as: " + str(water_mask_label) + 'nn')
            plt.imsave('D:..Data'+'img_'+str(a)+'.jpg', imar, cmap="gray")  
            i=1
            a+=1
            mask_i= 0
            semantic_jpeg = None
            imar = None
            water_mask = None
            water_mask_label = None
            segmentation = None
            water_mask_label = None
        else:       
            print("not water")
            if (mask_i < len(segmentation)):
                mask_i += 1
            else:
                f.write("image " + str(a) + "n unsuccess-labelling (has no 'water' label)" + "final mask_i value: " + str(mask_i) + "nwith dir: " + str(im)  + "n check later " +  + 'nn')
                print("masking fails, check later image" + im)
                i = 1
                continue
            
            
        #plt.imshow(water_mask)
        #plt.show()
        #print("type jpeg_im (jpeg)", type(water_mask))
    continue   
       
#print(len(cropped))
f.close()

Each of segmentation = semantic_segmentation_nvidia(jpeg_im) will have different size of array, for example with this image I have 11 items inside it like this:

The code (did this in jupyter notebook rows)

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>a_512 = semantic_segmentation_nvidia(image_512)
a_512
</code>
<code>a_512 = semantic_segmentation_nvidia(image_512) a_512 </code>
a_512 = semantic_segmentation_nvidia(image_512)
a_512

the output, a_512 variable is a List with 11 items inside it

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>[{'score': None,
'label': 'wall',
'mask': <PIL.Image.Image image mode=L size=512x512>},
{'score': None,
'label': 'building',
'mask': <PIL.Image.Image image mode=L size=512x512>},
{'score': None,
'label': 'sky',
'mask': <PIL.Image.Image image mode=L size=512x512>},
{'score': None,
'label': 'tree',
'mask': <PIL.Image.Image image mode=L size=512x512>},
{'score': None,
'label': 'earth',
'mask': <PIL.Image.Image image mode=L size=512x512>},
{'score': None,
'label': 'water',
'mask': <PIL.Image.Image image mode=L size=512x512>},
{'score': None,
'label': 'fence',
'mask': <PIL.Image.Image image mode=L size=512x512>},
{'score': None,
'label': 'railing',
'mask': <PIL.Image.Image image mode=L size=512x512>},
{'score': None,
'label': 'bridge',
'mask': <PIL.Image.Image image mode=L size=512x512>},
{'score': None,
'label': 'ship',
'mask': <PIL.Image.Image image mode=L size=512x512>},
{'score': None,
'label': 'pier',
'mask': <PIL.Image.Image image mode=L size=512x512>}]
</code>
<code>[{'score': None, 'label': 'wall', 'mask': <PIL.Image.Image image mode=L size=512x512>}, {'score': None, 'label': 'building', 'mask': <PIL.Image.Image image mode=L size=512x512>}, {'score': None, 'label': 'sky', 'mask': <PIL.Image.Image image mode=L size=512x512>}, {'score': None, 'label': 'tree', 'mask': <PIL.Image.Image image mode=L size=512x512>}, {'score': None, 'label': 'earth', 'mask': <PIL.Image.Image image mode=L size=512x512>}, {'score': None, 'label': 'water', 'mask': <PIL.Image.Image image mode=L size=512x512>}, {'score': None, 'label': 'fence', 'mask': <PIL.Image.Image image mode=L size=512x512>}, {'score': None, 'label': 'railing', 'mask': <PIL.Image.Image image mode=L size=512x512>}, {'score': None, 'label': 'bridge', 'mask': <PIL.Image.Image image mode=L size=512x512>}, {'score': None, 'label': 'ship', 'mask': <PIL.Image.Image image mode=L size=512x512>}, {'score': None, 'label': 'pier', 'mask': <PIL.Image.Image image mode=L size=512x512>}] </code>
[{'score': None,
  'label': 'wall',
  'mask': <PIL.Image.Image image mode=L size=512x512>},
 {'score': None,
  'label': 'building',
  'mask': <PIL.Image.Image image mode=L size=512x512>},
 {'score': None,
  'label': 'sky',
  'mask': <PIL.Image.Image image mode=L size=512x512>},
 {'score': None,
  'label': 'tree',
  'mask': <PIL.Image.Image image mode=L size=512x512>},
 {'score': None,
  'label': 'earth',
  'mask': <PIL.Image.Image image mode=L size=512x512>},
 {'score': None,
  'label': 'water',
  'mask': <PIL.Image.Image image mode=L size=512x512>},
 {'score': None,
  'label': 'fence',
  'mask': <PIL.Image.Image image mode=L size=512x512>},
 {'score': None,
  'label': 'railing',
  'mask': <PIL.Image.Image image mode=L size=512x512>},
 {'score': None,
  'label': 'bridge',
  'mask': <PIL.Image.Image image mode=L size=512x512>},
 {'score': None,
  'label': 'ship',
  'mask': <PIL.Image.Image image mode=L size=512x512>},
 {'score': None,
  'label': 'pier',
  'mask': <PIL.Image.Image image mode=L size=512x512>}]

To access things I need, probably the ‘label’, I need to access the PIL.Image.Imagedata from each List item like this

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>(a_512[5]["mask"]
</code>
<code>(a_512[5]["mask"] </code>
(a_512[5]["mask"]

In the codes above, I used a variable to represent 5 in this code because apparently each image has different order of when it detects ‘water’ as the label and thus the required mask.

Because python can compare strings, I’m trying to make a for loop to check every items in the list of every 8752 images. Let’s say some of the images can have 10-12 items like this output of the final run.

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>D:..Datacropped_512img_2541.jpg
the length of current segmentation labels are: 15
car
here
not water
D:..Datacropped_512img_2541.jpg
the length of current segmentation labels are: 15
water
here
Successful labelling at: 7
here
water
type im (array) <class 'numpy.ndarray'>
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are: 12
wall
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are: 12
building
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are: 12
sky
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are: 12
tree
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are: 12
road
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are: 12
mountain
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are: 12
car
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are: 12
sea
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are: 12
fence
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are: 12
bridge
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are: 12
boat
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are: 12
ship
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are: 12
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
Cell In[16], line 17
15 segmentation = semantic_segmentation_nvidia(jpeg_im)
16 print("the length of current segmentation labels are: ", len(segmentation))
---> 17 water_mask_label = segmentation[mask_i]["label"]
18 print(water_mask_label)
19 print("here")
IndexError: list index out of range
</code>
<code>D:..Datacropped_512img_2541.jpg the length of current segmentation labels are: 15 car here not water D:..Datacropped_512img_2541.jpg the length of current segmentation labels are: 15 water here Successful labelling at: 7 here water type im (array) <class 'numpy.ndarray'> D:..Datacropped_512img_2542.jpg the length of current segmentation labels are: 12 wall here not water D:..Datacropped_512img_2542.jpg the length of current segmentation labels are: 12 building here not water D:..Datacropped_512img_2542.jpg the length of current segmentation labels are: 12 sky here not water D:..Datacropped_512img_2542.jpg the length of current segmentation labels are: 12 tree here not water D:..Datacropped_512img_2542.jpg the length of current segmentation labels are: 12 road here not water D:..Datacropped_512img_2542.jpg the length of current segmentation labels are: 12 mountain here not water D:..Datacropped_512img_2542.jpg the length of current segmentation labels are: 12 car here not water D:..Datacropped_512img_2542.jpg the length of current segmentation labels are: 12 sea here not water D:..Datacropped_512img_2542.jpg the length of current segmentation labels are: 12 fence here not water D:..Datacropped_512img_2542.jpg the length of current segmentation labels are: 12 bridge here not water D:..Datacropped_512img_2542.jpg the length of current segmentation labels are: 12 boat here not water D:..Datacropped_512img_2542.jpg the length of current segmentation labels are: 12 ship here not water D:..Datacropped_512img_2542.jpg the length of current segmentation labels are: 12 --------------------------------------------------------------------------- IndexError Traceback (most recent call last) Cell In[16], line 17 15 segmentation = semantic_segmentation_nvidia(jpeg_im) 16 print("the length of current segmentation labels are: ", len(segmentation)) ---> 17 water_mask_label = segmentation[mask_i]["label"] 18 print(water_mask_label) 19 print("here") IndexError: list index out of range </code>
D:..Datacropped_512img_2541.jpg
the length of current segmentation labels are:  15
car
here
not water
D:..Datacropped_512img_2541.jpg
the length of current segmentation labels are:  15
water
here
Successful labelling at:  7
here
water
type im (array) <class 'numpy.ndarray'>
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are:  12
wall
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are:  12
building
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are:  12
sky
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are:  12
tree
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are:  12
road
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are:  12
mountain
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are:  12
car
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are:  12
sea
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are:  12
fence
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are:  12
bridge
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are:  12
boat
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are:  12
ship
here
not water
D:..Datacropped_512img_2542.jpg
the length of current segmentation labels are:  12

---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
Cell In[16], line 17
     15 segmentation = semantic_segmentation_nvidia(jpeg_im)
     16 print("the length of current segmentation labels are: ", len(segmentation))
---> 17 water_mask_label = segmentation[mask_i]["label"]
     18 print(water_mask_label)
     19 print("here")    

IndexError: list index out of range

As you can see the index keeps increasing and didn’t touch the last else of the if-else comparator, so it went out of bounds. I have tried this and using range on the for-loop but it didn’t work and still went out of bounds. I put breaks and it stops the loop, I put continue it keeps went out of bounds.Which part did I do wrong and understood incorrectly about python comparator behavior?

I also tried logging it into .txt file or give status with print but it didn’t go that way and always go out of bounds. Will gladly add more details if needed. The image is 512 x 512 size.

6

The problem is solved according to @OldBoy input to move the increment.

full code

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>mask_i = 0
a = 0
f = open("masking_log.txt", "w")
for im in large_image_stack_512:
image_success_flag = 0
mask_i= 0
while(image_success_flag < 1):
jpeg_im = Image.open(os.path.join(ROOT_DIR,im))
print(os.path.join(ROOT_DIR,im))
# Semantic segmentation
segmentation = semantic_segmentation_nvidia(jpeg_im)
print("the length of current segmentation labels are: ", len(segmentation))
while(mask_i < len(segmentation)):
image_mask = segmentation[mask_i]["label"]
print(image_mask)
if(image_mask == "water"):
print("correct mask")
water_mask = segmentation[mask_i]["mask"]
imar = np.asarray(water_mask)
plt.imsave('D:/semester_12/Data_Irredeano/'+'img_'+str(a)+'.jpg', imar, cmap="gray")
print("here")
f.write("image " + str(a) + "nsuccess-label at " + str(mask_i) + "nwith dir: " + str(im) + "n with mask labeled as: " + str(water_mask_label) + 'nn')
print("mask-succesfully saved")
mask_i = 0
break
elif(image_mask != "water"):
mask_i+=1
print("number of mask: ", mask_i)
if(mask_i == len(segmentation)):
print("this image has no correct mask, check later")
f.write("image " + str(a) + "n unsuccess-labelling (has no 'water' label) final n mask_i value: " + str(mask_i) + "nwith dir: " + str(im) + "n check later " + 'nn')
image_success_flag=+1
a+=1
f.close()
</code>
<code>mask_i = 0 a = 0 f = open("masking_log.txt", "w") for im in large_image_stack_512: image_success_flag = 0 mask_i= 0 while(image_success_flag < 1): jpeg_im = Image.open(os.path.join(ROOT_DIR,im)) print(os.path.join(ROOT_DIR,im)) # Semantic segmentation segmentation = semantic_segmentation_nvidia(jpeg_im) print("the length of current segmentation labels are: ", len(segmentation)) while(mask_i < len(segmentation)): image_mask = segmentation[mask_i]["label"] print(image_mask) if(image_mask == "water"): print("correct mask") water_mask = segmentation[mask_i]["mask"] imar = np.asarray(water_mask) plt.imsave('D:/semester_12/Data_Irredeano/'+'img_'+str(a)+'.jpg', imar, cmap="gray") print("here") f.write("image " + str(a) + "nsuccess-label at " + str(mask_i) + "nwith dir: " + str(im) + "n with mask labeled as: " + str(water_mask_label) + 'nn') print("mask-succesfully saved") mask_i = 0 break elif(image_mask != "water"): mask_i+=1 print("number of mask: ", mask_i) if(mask_i == len(segmentation)): print("this image has no correct mask, check later") f.write("image " + str(a) + "n unsuccess-labelling (has no 'water' label) final n mask_i value: " + str(mask_i) + "nwith dir: " + str(im) + "n check later " + 'nn') image_success_flag=+1 a+=1 f.close() </code>
mask_i = 0
a = 0

f = open("masking_log.txt", "w")

for im in large_image_stack_512:
    image_success_flag = 0
    mask_i= 0
    
    while(image_success_flag < 1):
        jpeg_im = Image.open(os.path.join(ROOT_DIR,im))
        print(os.path.join(ROOT_DIR,im))
        # Semantic segmentation
        segmentation = semantic_segmentation_nvidia(jpeg_im)
        print("the length of current segmentation labels are: ", len(segmentation))
        while(mask_i < len(segmentation)):
           image_mask = segmentation[mask_i]["label"]
           print(image_mask)
           if(image_mask == "water"):
               print("correct mask")
               water_mask = segmentation[mask_i]["mask"]
               imar = np.asarray(water_mask)
               plt.imsave('D:/semester_12/Data_Irredeano/'+'img_'+str(a)+'.jpg', imar, cmap="gray") 
               print("here")
               f.write("image " + str(a) + "nsuccess-label at " + str(mask_i) + "nwith dir: " + str(im)  + "n with mask labeled as: " + str(water_mask_label) + 'nn')
               print("mask-succesfully saved")
               mask_i = 0 
               break
           elif(image_mask != "water"):
               mask_i+=1
               print("number of mask: ", mask_i)
               if(mask_i == len(segmentation)):
                    print("this image has no correct mask, check later")
                    f.write("image " + str(a) + "n unsuccess-labelling (has no 'water' label) final n mask_i value: " + str(mask_i) + "nwith dir: " + str(im)  + "n check later " + 'nn')
               image_success_flag=+1  
        a+=1


f.close()

Basically instead of selecting mask by checking the segmentation[mask_i]["label] I check if the ‘cursor’ or mask_i if it’s smaller than the length of the List (len(segmentation)). The += also contribute to the problem since it’s adding first then change the number, as implied here and here, because of that my ‘cursor variable’ can move beyond the array size before checking the segmentation[mask_i]["label]. But I don’t think I have other choice other than that to increment since =+ is just redefining itself.

Other than that I also add another while condition to make sure the code runs while the mask_i is below the size of the List, so the program become “if it’s still below the list size, check whether mask is “water” or not “water”.

Although the program is finished and can mask most of the images, I still have to log several different images since not all of them had “water” as the label, but something close like “Sea” that we humans can intuitively say they are basically the same but computer that can only compare strings not.

Thank you again for everyone who’s willing to help, I’m accepting if there’s better way to do it

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật