Question:
I’m looking for best practices or a good workflow to manage DataFrame metadata in a centralized way in Python. Specifically, I need to handle column names, data types, and NaN values flexibly as I load, clean, and process data. What are common solutions / best practices?
Background:
- Data Loading: I want to assign column names dynamically when loading data from CSV files.
- Data Processing: I clean and process data in multiple steps, sometimes adding new feature columns.
- Centralized Metadata: I’m aiming for a centralized approach to managing column names, data types, etc., so that I can easily adjust them later on. Ideally, I’d like to reference columns like df[metadata.column1].
What I’ve Tried:
- Pandera: I explored using Pandera, but it seems more focused on data validation rather than metadata management or column referencing.
- Custom Classes: I experimented with creating a Column dataclass and a Schema class to store DataFrame metadata. Here’s a simplified version of what I did:
<code>from typing import Any
from dataclasses import dataclass
import pandas as pd
@dataclass
class Column:
name: str
dtype: str = None
nan_values: list[Any] | Any = None
class BaseSchema:
@staticmethod
def column_names(self):
return [col.name for col in self.__dict__.values() if isinstance(col, Column)]
@staticmethod
def dtypes(self):
return {col.name: col.dtype for col in self.__dict__.values() if isinstance(col, Column)}
@staticmethod
def na_values(self):
return {col.name: col.nan_values for col in self.__dict__.values() if isinstance(col, Column)}
class ImportSchema(BaseSchema):
region = Column(name="region", dtype="category")
category = Column(name="category", dtype="category")
parameter = Column(name="parameter", dtype="category")
model = Column(name="model", dtype="category")
powertrain = Column(name="powertrain", dtype="category")
year = Column(name="year", dtype='Int64')
unit = Column(name="unit", dtype="category")
value = Column(name="value", dtype=float)
class CleanedSchema(ImportSchema):
region = Column(name="region_cleaned", dtype="category")
class ProcessedSchema(CleanedSchema):
region = Column(name="region_processed", dtype="category")
class FeatureSchema(ProcessedSchema):
new_feature = Column(name="new_feature", dtype="category")
def load_data(path: str) -> pd.DataFrame:
return pd.read_csv(path, dtype=ImportSchema.dtypes(), na_values=ImportSchema.na_values())
if __name__ == "__main__":
df = load_data(r"data.csv")
df = df.rename(columns={ImportSchema.region.name: CleanedSchema.region.name}).astype(CleanedSchema.region.dtype)
df[FeatureSchema.new_feature.name] = df[CleanedSchema.region.name].apply(do_something).astype(FeatureSchema.new_feature.dtype)
</code>
<code>from typing import Any
from dataclasses import dataclass
import pandas as pd
@dataclass
class Column:
name: str
dtype: str = None
nan_values: list[Any] | Any = None
class BaseSchema:
@staticmethod
def column_names(self):
return [col.name for col in self.__dict__.values() if isinstance(col, Column)]
@staticmethod
def dtypes(self):
return {col.name: col.dtype for col in self.__dict__.values() if isinstance(col, Column)}
@staticmethod
def na_values(self):
return {col.name: col.nan_values for col in self.__dict__.values() if isinstance(col, Column)}
class ImportSchema(BaseSchema):
region = Column(name="region", dtype="category")
category = Column(name="category", dtype="category")
parameter = Column(name="parameter", dtype="category")
model = Column(name="model", dtype="category")
powertrain = Column(name="powertrain", dtype="category")
year = Column(name="year", dtype='Int64')
unit = Column(name="unit", dtype="category")
value = Column(name="value", dtype=float)
class CleanedSchema(ImportSchema):
region = Column(name="region_cleaned", dtype="category")
class ProcessedSchema(CleanedSchema):
region = Column(name="region_processed", dtype="category")
class FeatureSchema(ProcessedSchema):
new_feature = Column(name="new_feature", dtype="category")
def load_data(path: str) -> pd.DataFrame:
return pd.read_csv(path, dtype=ImportSchema.dtypes(), na_values=ImportSchema.na_values())
if __name__ == "__main__":
df = load_data(r"data.csv")
df = df.rename(columns={ImportSchema.region.name: CleanedSchema.region.name}).astype(CleanedSchema.region.dtype)
df[FeatureSchema.new_feature.name] = df[CleanedSchema.region.name].apply(do_something).astype(FeatureSchema.new_feature.dtype)
</code>
from typing import Any
from dataclasses import dataclass
import pandas as pd
@dataclass
class Column:
name: str
dtype: str = None
nan_values: list[Any] | Any = None
class BaseSchema:
@staticmethod
def column_names(self):
return [col.name for col in self.__dict__.values() if isinstance(col, Column)]
@staticmethod
def dtypes(self):
return {col.name: col.dtype for col in self.__dict__.values() if isinstance(col, Column)}
@staticmethod
def na_values(self):
return {col.name: col.nan_values for col in self.__dict__.values() if isinstance(col, Column)}
class ImportSchema(BaseSchema):
region = Column(name="region", dtype="category")
category = Column(name="category", dtype="category")
parameter = Column(name="parameter", dtype="category")
model = Column(name="model", dtype="category")
powertrain = Column(name="powertrain", dtype="category")
year = Column(name="year", dtype='Int64')
unit = Column(name="unit", dtype="category")
value = Column(name="value", dtype=float)
class CleanedSchema(ImportSchema):
region = Column(name="region_cleaned", dtype="category")
class ProcessedSchema(CleanedSchema):
region = Column(name="region_processed", dtype="category")
class FeatureSchema(ProcessedSchema):
new_feature = Column(name="new_feature", dtype="category")
def load_data(path: str) -> pd.DataFrame:
return pd.read_csv(path, dtype=ImportSchema.dtypes(), na_values=ImportSchema.na_values())
if __name__ == "__main__":
df = load_data(r"data.csv")
df = df.rename(columns={ImportSchema.region.name: CleanedSchema.region.name}).astype(CleanedSchema.region.dtype)
df[FeatureSchema.new_feature.name] = df[CleanedSchema.region.name].apply(do_something).astype(FeatureSchema.new_feature.dtype)
New contributor
feuermelder123 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
3