Back-Propagation going to -nan on all training examples

I am working on writing my first neural network. It’s a perceptron with (potentially) multiple hidden layers. Currently, it’s configured to have 3 layers, and that configuration is in main.cpp. I am running some training examples on the neural net using back propagation, and hoping that the output approximates the XOR of the two input neurons. Here is the total code:

main.cpp

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>#include "Perceptron.cpp"
#include "TrainingData.cpp"
int main()
{
int numLayers = 3;
int neuronsPerLayer[3] = { 2, 2, 1 };
Perceptron::Perceptron perceptron(numLayers, neuronsPerLayer, 0.01);
perceptron.initializeWeightsAndBiases();
perceptron.print();
std::cout << "Training begin." << std::endl;
for (int reps = 0; reps < 10000; reps++)
{
for (int i = 0; i < NUM_TRAINING_DATA; i++)
{
perceptron.backPropogation(trainingInput[i], trainingGoal[i]);
}
}
std::cout << "Training complete." << std::endl;
float input[2] = { 0, 0 };
float * output = perceptron.forwardPropogation(input);
std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl;
input[0] = 0;
input[1] = 1;
output = perceptron.forwardPropogation(input);
std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl;
input[0] = 1;
input[1] = 0;
output = perceptron.forwardPropogation(input);
std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl;
input[0] = 1;
input[1] = 1;
output = perceptron.forwardPropogation(input);
std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl;
return 0;
}
</code>
<code>#include "Perceptron.cpp" #include "TrainingData.cpp" int main() { int numLayers = 3; int neuronsPerLayer[3] = { 2, 2, 1 }; Perceptron::Perceptron perceptron(numLayers, neuronsPerLayer, 0.01); perceptron.initializeWeightsAndBiases(); perceptron.print(); std::cout << "Training begin." << std::endl; for (int reps = 0; reps < 10000; reps++) { for (int i = 0; i < NUM_TRAINING_DATA; i++) { perceptron.backPropogation(trainingInput[i], trainingGoal[i]); } } std::cout << "Training complete." << std::endl; float input[2] = { 0, 0 }; float * output = perceptron.forwardPropogation(input); std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl; input[0] = 0; input[1] = 1; output = perceptron.forwardPropogation(input); std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl; input[0] = 1; input[1] = 0; output = perceptron.forwardPropogation(input); std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl; input[0] = 1; input[1] = 1; output = perceptron.forwardPropogation(input); std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl; return 0; } </code>
#include "Perceptron.cpp"
#include "TrainingData.cpp"

int main()
{
    int numLayers = 3;
    int neuronsPerLayer[3] = { 2, 2, 1 };

    Perceptron::Perceptron perceptron(numLayers, neuronsPerLayer, 0.01);

    perceptron.initializeWeightsAndBiases();

    perceptron.print();

    std::cout << "Training begin." << std::endl;

    for (int reps = 0; reps < 10000; reps++)
    {
        for (int i = 0; i < NUM_TRAINING_DATA; i++)
        {
            perceptron.backPropogation(trainingInput[i], trainingGoal[i]);
        }
    }

    std::cout << "Training complete." << std::endl;


    float input[2] = { 0, 0 };

    float * output = perceptron.forwardPropogation(input);
    std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl;

    input[0] = 0;
    input[1] = 1;

    output = perceptron.forwardPropogation(input);
    std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl;

    input[0] = 1;
    input[1] = 0;

    output = perceptron.forwardPropogation(input);
    std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl;

    input[0] = 1;
    input[1] = 1;

    output = perceptron.forwardPropogation(input);
    std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl;
    

    return 0;
}

Helpers.cpp

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>
namespace Perceptron
{
float dotProduct(float * weight, float * activation, int size)
{
float sum = 0;
for (int idx = 0; idx < size; idx++)
{
sum += weight[idx] * activation[idx];
}
return sum;
}
float sum(float * input, int size)
{
float sum = 0;
for (int idx = 0; idx < size; idx++)
{
sum += input[idx];
}
return sum;
}
}
</code>
<code> namespace Perceptron { float dotProduct(float * weight, float * activation, int size) { float sum = 0; for (int idx = 0; idx < size; idx++) { sum += weight[idx] * activation[idx]; } return sum; } float sum(float * input, int size) { float sum = 0; for (int idx = 0; idx < size; idx++) { sum += input[idx]; } return sum; } } </code>

namespace Perceptron
{
    float dotProduct(float * weight, float * activation, int size)
    {
        float sum = 0;

        for (int idx = 0; idx < size; idx++)
        {
            sum += weight[idx] * activation[idx];
        }

        return sum;
    }

    float sum(float * input, int size)
    {
        float sum = 0;

        for (int idx = 0; idx < size; idx++)
        {
            sum += input[idx];
        }

        return sum;
    }
    
}

Perceptron.cpp

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>
#include <cmath>
#include <iostream>
#include "Helpers.cpp"
namespace Perceptron
{
class Perceptron
{
private:
int numLayers;
float learningRate;
int * layerSizes; // layerSizes[layer]
float * * * weights; // weights[source layer][destination neuron][source neuron]
float * * biases;
float * * activations; // activations[layer][neuron]
public:
Perceptron(int numLayers, int * layerSizes, float learningRate)
{
this->numLayers = numLayers;
this->layerSizes = layerSizes;
this->learningRate = learningRate;
weights = new float * * [numLayers - 1]; // No weights from last layer.
for (int layer = 0; layer < numLayers - 1; layer++)
{
weights[layer] = new float * [layerSizes[layer + 1]]; // Destination neuron array.
for (int source = 0; source < layerSizes[layer]; source++)
{
weights[layer][source] = new float[layerSizes[layer]]; // Source neuron array.
}
}
activations = new float * [numLayers];
biases = new float * [numLayers];
for (int layer = 0; layer < numLayers; layer++)
{
activations[layer] = new float[layerSizes[layer]];
biases[layer] = new float[layerSizes[layer]];
}
}
void print()
{
std::cout << "Weights:" << std::endl;
for (int layer = 0; layer < numLayers - 1; layer++)
{
std::cout << "Layer " << layer << " weights:";
for (int destNeuron = 0; destNeuron < layerSizes[layer + 1]; destNeuron++)
{
for (int sourceNeuron = 0; sourceNeuron < layerSizes[layer]; sourceNeuron++)
{
std::cout << sourceNeuron << " -> " << destNeuron << ": " << weights[layer][destNeuron][sourceNeuron] << std::endl;
}
}
std::cout << std::endl << std::endl;
}
std::cout << "Biases" << std::endl;
for (int layer = 0; layer < numLayers; layer++)
{
for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
{
std::cout << biases[layer][neuron] << " ";
}
std::cout << std::endl;
}
std::cout << "Activations" << std::endl;
for (int layer = 0; layer < numLayers; layer++)
{
for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
{
std::cout << activations[layer][neuron] << " ";
}
std::cout << std::endl;
}
}
void initializeWeightsAndBiases()
{
srand(time(NULL));
for (int layer = 0; layer < numLayers - 1; layer++)
{
for (int destNeuron = 0; destNeuron < layerSizes[layer + 1]; destNeuron++)
{
for (int sourceNeuron = 0; sourceNeuron < layerSizes[layer]; sourceNeuron++)
{
weights[layer][destNeuron][sourceNeuron] = 2 * ((float) rand()) / (float) RAND_MAX;
weights[layer][destNeuron][sourceNeuron] -= 1;
}
}
}
for (int layer = 0; layer < numLayers; layer++)
{
for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
{
biases[layer][neuron] = 2 * ((float) rand()) / (float) RAND_MAX;
biases[layer][neuron] -= 1;
}
}
}
float * forwardPropogation(float input[])
{
int outputSize = layerSizes[numLayers - 1];
float * output = new float[outputSize];
// For each layer
for (int layer = 0; layer < numLayers; layer++)
{
// For each neuron in that layer.
for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
{
if (layer == 0)
{
// Activation equals input.
activations[layer][neuron] = input[neuron];
}
else
{
activations[layer][neuron] = sigmoid(
dotProduct(
weights[layer - 1][neuron],
activations[layer - 1],
layerSizes[layer - 1]
) + biases[layer][neuron],
false);
}
}
}
for (int neuron = 0; neuron < outputSize; neuron++)
{
output[neuron] = activations[numLayers - 1][neuron];
}
// TODO - Free all memory.
return output;
}
void backPropogation(float * input, float * goal)
{
// Forward prop
float * forwardResult = forwardPropogation(input);
float * * errors = new float * [numLayers];
for (int layer = 0; layer < numLayers; layer++)
{
errors[layer] = new float[layerSizes[layer]];
}
// Output layer errors.
for (int neuron = 0; neuron < layerSizes[numLayers - 1]; neuron++)
{
errors[numLayers - 1][neuron] = cost(goal[neuron], forwardResult[neuron]);
}
// Hidden layers errors.
for (int layer = numLayers - 2; layer >= 0; layer--)
{
for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
{
float errorSum = 0.0;
float zSum = 0.0;
for (int next = 0; next < layerSizes[layer + 1]; next++)
{
errorSum += (errors[layer + 1][next] * weights[layer][next][neuron]);
}
if (layer == 0)
{
//zSum = input[neuron] + biases[0][neuron];
for (int prev = 0; prev < layerSizes[0]; prev++) // inputSize should be defined globally or passed as a parameter
{
zSum += weights[layer][neuron][prev] * input[prev];
}
zSum += biases[layer][neuron];
}
else
{
for (int prev = 0; prev < layerSizes[layer - 1]; prev++)
{
zSum += (weights[layer - 1][neuron][prev] * activations[layer - 1][prev]);
}
zSum += biases[layer][neuron];
}
errors[layer][neuron] = errorSum * sigmoid(zSum, true);
}
}
// Adjust Weights.
for (int layer = 0; layer < numLayers - 1; layer++)
{
for (int dest = 0; dest < layerSizes[layer + 1]; dest++)
{
for (int source = 0; source < layerSizes[layer]; source++)
{
weights[layer][dest][source] -= learningRate * (errors[layer + 1][dest] * activations[layer][source]);
}
}
}
// Adjust Biases.
for (int layer = 0; layer < numLayers; layer++)
{
for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
{
biases[layer][neuron] -= learningRate * (errors[layer][neuron]);
}
}
// TODO - Free all memory.
}
float sigmoid(float x, bool derivative)
{
if (derivative)
{
return x * (1 - x);
}
else
{
return 1 / (1 + exp(0 - x));
}
}
float cost(float expected, float calculated)
{
return (calculated - expected);
}
};
};
</code>
<code> #include <cmath> #include <iostream> #include "Helpers.cpp" namespace Perceptron { class Perceptron { private: int numLayers; float learningRate; int * layerSizes; // layerSizes[layer] float * * * weights; // weights[source layer][destination neuron][source neuron] float * * biases; float * * activations; // activations[layer][neuron] public: Perceptron(int numLayers, int * layerSizes, float learningRate) { this->numLayers = numLayers; this->layerSizes = layerSizes; this->learningRate = learningRate; weights = new float * * [numLayers - 1]; // No weights from last layer. for (int layer = 0; layer < numLayers - 1; layer++) { weights[layer] = new float * [layerSizes[layer + 1]]; // Destination neuron array. for (int source = 0; source < layerSizes[layer]; source++) { weights[layer][source] = new float[layerSizes[layer]]; // Source neuron array. } } activations = new float * [numLayers]; biases = new float * [numLayers]; for (int layer = 0; layer < numLayers; layer++) { activations[layer] = new float[layerSizes[layer]]; biases[layer] = new float[layerSizes[layer]]; } } void print() { std::cout << "Weights:" << std::endl; for (int layer = 0; layer < numLayers - 1; layer++) { std::cout << "Layer " << layer << " weights:"; for (int destNeuron = 0; destNeuron < layerSizes[layer + 1]; destNeuron++) { for (int sourceNeuron = 0; sourceNeuron < layerSizes[layer]; sourceNeuron++) { std::cout << sourceNeuron << " -> " << destNeuron << ": " << weights[layer][destNeuron][sourceNeuron] << std::endl; } } std::cout << std::endl << std::endl; } std::cout << "Biases" << std::endl; for (int layer = 0; layer < numLayers; layer++) { for (int neuron = 0; neuron < layerSizes[layer]; neuron++) { std::cout << biases[layer][neuron] << " "; } std::cout << std::endl; } std::cout << "Activations" << std::endl; for (int layer = 0; layer < numLayers; layer++) { for (int neuron = 0; neuron < layerSizes[layer]; neuron++) { std::cout << activations[layer][neuron] << " "; } std::cout << std::endl; } } void initializeWeightsAndBiases() { srand(time(NULL)); for (int layer = 0; layer < numLayers - 1; layer++) { for (int destNeuron = 0; destNeuron < layerSizes[layer + 1]; destNeuron++) { for (int sourceNeuron = 0; sourceNeuron < layerSizes[layer]; sourceNeuron++) { weights[layer][destNeuron][sourceNeuron] = 2 * ((float) rand()) / (float) RAND_MAX; weights[layer][destNeuron][sourceNeuron] -= 1; } } } for (int layer = 0; layer < numLayers; layer++) { for (int neuron = 0; neuron < layerSizes[layer]; neuron++) { biases[layer][neuron] = 2 * ((float) rand()) / (float) RAND_MAX; biases[layer][neuron] -= 1; } } } float * forwardPropogation(float input[]) { int outputSize = layerSizes[numLayers - 1]; float * output = new float[outputSize]; // For each layer for (int layer = 0; layer < numLayers; layer++) { // For each neuron in that layer. for (int neuron = 0; neuron < layerSizes[layer]; neuron++) { if (layer == 0) { // Activation equals input. activations[layer][neuron] = input[neuron]; } else { activations[layer][neuron] = sigmoid( dotProduct( weights[layer - 1][neuron], activations[layer - 1], layerSizes[layer - 1] ) + biases[layer][neuron], false); } } } for (int neuron = 0; neuron < outputSize; neuron++) { output[neuron] = activations[numLayers - 1][neuron]; } // TODO - Free all memory. return output; } void backPropogation(float * input, float * goal) { // Forward prop float * forwardResult = forwardPropogation(input); float * * errors = new float * [numLayers]; for (int layer = 0; layer < numLayers; layer++) { errors[layer] = new float[layerSizes[layer]]; } // Output layer errors. for (int neuron = 0; neuron < layerSizes[numLayers - 1]; neuron++) { errors[numLayers - 1][neuron] = cost(goal[neuron], forwardResult[neuron]); } // Hidden layers errors. for (int layer = numLayers - 2; layer >= 0; layer--) { for (int neuron = 0; neuron < layerSizes[layer]; neuron++) { float errorSum = 0.0; float zSum = 0.0; for (int next = 0; next < layerSizes[layer + 1]; next++) { errorSum += (errors[layer + 1][next] * weights[layer][next][neuron]); } if (layer == 0) { //zSum = input[neuron] + biases[0][neuron]; for (int prev = 0; prev < layerSizes[0]; prev++) // inputSize should be defined globally or passed as a parameter { zSum += weights[layer][neuron][prev] * input[prev]; } zSum += biases[layer][neuron]; } else { for (int prev = 0; prev < layerSizes[layer - 1]; prev++) { zSum += (weights[layer - 1][neuron][prev] * activations[layer - 1][prev]); } zSum += biases[layer][neuron]; } errors[layer][neuron] = errorSum * sigmoid(zSum, true); } } // Adjust Weights. for (int layer = 0; layer < numLayers - 1; layer++) { for (int dest = 0; dest < layerSizes[layer + 1]; dest++) { for (int source = 0; source < layerSizes[layer]; source++) { weights[layer][dest][source] -= learningRate * (errors[layer + 1][dest] * activations[layer][source]); } } } // Adjust Biases. for (int layer = 0; layer < numLayers; layer++) { for (int neuron = 0; neuron < layerSizes[layer]; neuron++) { biases[layer][neuron] -= learningRate * (errors[layer][neuron]); } } // TODO - Free all memory. } float sigmoid(float x, bool derivative) { if (derivative) { return x * (1 - x); } else { return 1 / (1 + exp(0 - x)); } } float cost(float expected, float calculated) { return (calculated - expected); } }; }; </code>

#include <cmath>
#include <iostream>
#include "Helpers.cpp"


namespace Perceptron
{
    class Perceptron
    {
        private:
            int numLayers;
            float learningRate;
            int * layerSizes; // layerSizes[layer]
            float * * * weights; // weights[source layer][destination neuron][source neuron]
            float * * biases;
            float * * activations; // activations[layer][neuron]
        
        public:
            Perceptron(int numLayers, int * layerSizes, float learningRate)
            {
                this->numLayers = numLayers;
                this->layerSizes = layerSizes;
                this->learningRate = learningRate;

                weights = new float * * [numLayers - 1]; // No weights from last layer.
                for (int layer = 0; layer < numLayers - 1; layer++)
                {
                    weights[layer] = new float * [layerSizes[layer + 1]]; // Destination neuron array.

                    for (int source = 0; source < layerSizes[layer]; source++)
                    {
                        weights[layer][source] = new float[layerSizes[layer]]; // Source neuron array.
                    }
                }

                activations = new float * [numLayers];
                biases = new float * [numLayers];
                for (int layer = 0; layer < numLayers; layer++)
                {
                    activations[layer] = new float[layerSizes[layer]];
                    biases[layer] = new float[layerSizes[layer]];
                }

            }


            void print()
            {
                std::cout << "Weights:" << std::endl;
                for (int layer = 0; layer < numLayers - 1; layer++)
                {
                    std::cout << "Layer " << layer << " weights:";
                    for (int destNeuron = 0; destNeuron < layerSizes[layer + 1]; destNeuron++)
                    {
                        for (int sourceNeuron = 0; sourceNeuron < layerSizes[layer]; sourceNeuron++)
                        {
                            std::cout << sourceNeuron << " -> " << destNeuron << ": " << weights[layer][destNeuron][sourceNeuron] << std::endl;
                        }
                    }
                    std::cout << std::endl << std::endl;
                }

                std::cout << "Biases" << std::endl;
                for (int layer = 0; layer < numLayers; layer++)
                {
                    for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
                    {
                        std::cout << biases[layer][neuron] << " ";
                    }
                    std::cout << std::endl;
                }

                std::cout << "Activations" << std::endl;
                for (int layer = 0; layer < numLayers; layer++)
                {
                    for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
                    {
                        std::cout << activations[layer][neuron] << " ";
                    }
                    std::cout << std::endl;
                }
            }


            void initializeWeightsAndBiases()
            {
                srand(time(NULL));

                for (int layer = 0; layer < numLayers - 1; layer++)
                {
                    for (int destNeuron = 0; destNeuron < layerSizes[layer + 1]; destNeuron++)
                    {
                        for (int sourceNeuron = 0; sourceNeuron < layerSizes[layer]; sourceNeuron++)
                        {
                            weights[layer][destNeuron][sourceNeuron] = 2 * ((float) rand()) / (float) RAND_MAX;
                            weights[layer][destNeuron][sourceNeuron] -= 1;
                        }
                    }
                }

                for (int layer = 0; layer < numLayers; layer++)
                {
                    for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
                    {
                        biases[layer][neuron] = 2 * ((float) rand()) / (float) RAND_MAX;
                        biases[layer][neuron] -= 1;
                    }
                }
            }


            float * forwardPropogation(float input[])
            {
                int outputSize = layerSizes[numLayers - 1];
                float * output = new float[outputSize];

                // For each layer
                for (int layer = 0; layer < numLayers; layer++)
                {
                    // For each neuron in that layer.
                    for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
                    {
                        if (layer == 0)
                        {
                            // Activation equals input.
                            activations[layer][neuron] = input[neuron];
                        }
                        else
                        {
                            activations[layer][neuron] = sigmoid(
                                                            dotProduct(
                                                                weights[layer - 1][neuron],
                                                                activations[layer - 1],
                                                                layerSizes[layer - 1]
                                                            ) + biases[layer][neuron],
                                                        false);
                        }
                    }
                }

                for (int neuron = 0; neuron < outputSize; neuron++)
                {
                    output[neuron] = activations[numLayers - 1][neuron];
                }

                // TODO - Free all memory.

                return output;
            }


            void backPropogation(float * input, float * goal)
            {
                // Forward prop
                float * forwardResult = forwardPropogation(input);

                float * * errors = new float * [numLayers];

                for (int layer = 0; layer < numLayers; layer++)
                {
                    errors[layer] = new float[layerSizes[layer]];
                }

                // Output layer errors.
                for (int neuron = 0; neuron < layerSizes[numLayers - 1]; neuron++)
                {
                    errors[numLayers - 1][neuron] = cost(goal[neuron], forwardResult[neuron]);
                }

                // Hidden layers errors.
                for (int layer = numLayers - 2; layer >= 0; layer--)
                {
                    for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
                    {
                        float errorSum = 0.0;
                        float zSum = 0.0;

                        for (int next = 0; next < layerSizes[layer + 1]; next++)
                        {
                            errorSum += (errors[layer + 1][next] * weights[layer][next][neuron]);
                        }

                        if (layer == 0)
                        {
                            //zSum = input[neuron] + biases[0][neuron];
                            for (int prev = 0; prev < layerSizes[0]; prev++) // inputSize should be defined globally or passed as a parameter
                            {
                                zSum += weights[layer][neuron][prev] * input[prev];
                            }
                            zSum += biases[layer][neuron];
                        }
                        else
                        {
                            for (int prev = 0; prev < layerSizes[layer - 1]; prev++)
                            {
                                zSum += (weights[layer - 1][neuron][prev] * activations[layer - 1][prev]);
                            }
                            zSum += biases[layer][neuron];
                        }
                        
                        errors[layer][neuron] = errorSum * sigmoid(zSum, true);
                    }
                }

                // Adjust Weights.
                for (int layer = 0; layer < numLayers - 1; layer++)
                {
                    for (int dest = 0; dest < layerSizes[layer + 1]; dest++)
                    {
                        for (int source = 0; source < layerSizes[layer]; source++)
                        {
                            weights[layer][dest][source] -= learningRate * (errors[layer + 1][dest] * activations[layer][source]);
                        }
                    }
                }

                // Adjust Biases.
                for (int layer = 0; layer < numLayers; layer++)
                {
                    for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
                    {
                        biases[layer][neuron] -= learningRate * (errors[layer][neuron]);
                    }
                }

                // TODO - Free all memory.
            }


            float sigmoid(float x, bool derivative)
            {
                if (derivative)
                {
                    return x * (1 - x);
                }
                else
                {
                    return 1 / (1 + exp(0 - x));
                }
            }

            float cost(float expected, float calculated)
            {
                return (calculated - expected);
            }

    };

};

TrainingData.cpp

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>
#define NUM_TRAINING_DATA 4
float trainingInput[NUM_TRAINING_DATA][2] = {
{ 0, 0 },
{ 0, 1 },
{ 1, 0 },
{ 1, 1 }
};
float trainingGoal[NUM_TRAINING_DATA][1] = {
{ 0 },
{ 1 },
{ 1 },
{ 0 }
};
</code>
<code> #define NUM_TRAINING_DATA 4 float trainingInput[NUM_TRAINING_DATA][2] = { { 0, 0 }, { 0, 1 }, { 1, 0 }, { 1, 1 } }; float trainingGoal[NUM_TRAINING_DATA][1] = { { 0 }, { 1 }, { 1 }, { 0 } }; </code>

#define NUM_TRAINING_DATA 4

float trainingInput[NUM_TRAINING_DATA][2] = {
    { 0, 0 },
    { 0, 1 },
    { 1, 0 },
    { 1, 1 }
};

float trainingGoal[NUM_TRAINING_DATA][1] = {
    { 0 },
    { 1 },
    { 1 },
    { 0 }
};

As shown in main.cpp, I am running back propagation on this simple neural network with 10,000 epochs and a learning rate of 0.01. When I run forward propagation on the training examples, they always come to the same answer: -nan. I have been struggling to understand the back propagation algorithm, and wondering where I am incorrect.

New contributor

Cam D is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

2

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa

Back-Propagation going to -nan on all training examples

I am working on writing my first neural network. It’s a perceptron with (potentially) multiple hidden layers. Currently, it’s configured to have 3 layers, and that configuration is in main.cpp. I am running some training examples on the neural net using back propagation, and hoping that the output approximates the XOR of the two input neurons. Here is the total code:

main.cpp

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>#include "Perceptron.cpp"
#include "TrainingData.cpp"
int main()
{
int numLayers = 3;
int neuronsPerLayer[3] = { 2, 2, 1 };
Perceptron::Perceptron perceptron(numLayers, neuronsPerLayer, 0.01);
perceptron.initializeWeightsAndBiases();
perceptron.print();
std::cout << "Training begin." << std::endl;
for (int reps = 0; reps < 10000; reps++)
{
for (int i = 0; i < NUM_TRAINING_DATA; i++)
{
perceptron.backPropogation(trainingInput[i], trainingGoal[i]);
}
}
std::cout << "Training complete." << std::endl;
float input[2] = { 0, 0 };
float * output = perceptron.forwardPropogation(input);
std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl;
input[0] = 0;
input[1] = 1;
output = perceptron.forwardPropogation(input);
std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl;
input[0] = 1;
input[1] = 0;
output = perceptron.forwardPropogation(input);
std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl;
input[0] = 1;
input[1] = 1;
output = perceptron.forwardPropogation(input);
std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl;
return 0;
}
</code>
<code>#include "Perceptron.cpp" #include "TrainingData.cpp" int main() { int numLayers = 3; int neuronsPerLayer[3] = { 2, 2, 1 }; Perceptron::Perceptron perceptron(numLayers, neuronsPerLayer, 0.01); perceptron.initializeWeightsAndBiases(); perceptron.print(); std::cout << "Training begin." << std::endl; for (int reps = 0; reps < 10000; reps++) { for (int i = 0; i < NUM_TRAINING_DATA; i++) { perceptron.backPropogation(trainingInput[i], trainingGoal[i]); } } std::cout << "Training complete." << std::endl; float input[2] = { 0, 0 }; float * output = perceptron.forwardPropogation(input); std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl; input[0] = 0; input[1] = 1; output = perceptron.forwardPropogation(input); std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl; input[0] = 1; input[1] = 0; output = perceptron.forwardPropogation(input); std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl; input[0] = 1; input[1] = 1; output = perceptron.forwardPropogation(input); std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl; return 0; } </code>
#include "Perceptron.cpp"
#include "TrainingData.cpp"

int main()
{
    int numLayers = 3;
    int neuronsPerLayer[3] = { 2, 2, 1 };

    Perceptron::Perceptron perceptron(numLayers, neuronsPerLayer, 0.01);

    perceptron.initializeWeightsAndBiases();

    perceptron.print();

    std::cout << "Training begin." << std::endl;

    for (int reps = 0; reps < 10000; reps++)
    {
        for (int i = 0; i < NUM_TRAINING_DATA; i++)
        {
            perceptron.backPropogation(trainingInput[i], trainingGoal[i]);
        }
    }

    std::cout << "Training complete." << std::endl;


    float input[2] = { 0, 0 };

    float * output = perceptron.forwardPropogation(input);
    std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl;

    input[0] = 0;
    input[1] = 1;

    output = perceptron.forwardPropogation(input);
    std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl;

    input[0] = 1;
    input[1] = 0;

    output = perceptron.forwardPropogation(input);
    std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl;

    input[0] = 1;
    input[1] = 1;

    output = perceptron.forwardPropogation(input);
    std::cout << "Input = { " << input[0] << ", " << input[1] << " } Output = " << output[0] << std::endl;
    

    return 0;
}

Helpers.cpp

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>
namespace Perceptron
{
float dotProduct(float * weight, float * activation, int size)
{
float sum = 0;
for (int idx = 0; idx < size; idx++)
{
sum += weight[idx] * activation[idx];
}
return sum;
}
float sum(float * input, int size)
{
float sum = 0;
for (int idx = 0; idx < size; idx++)
{
sum += input[idx];
}
return sum;
}
}
</code>
<code> namespace Perceptron { float dotProduct(float * weight, float * activation, int size) { float sum = 0; for (int idx = 0; idx < size; idx++) { sum += weight[idx] * activation[idx]; } return sum; } float sum(float * input, int size) { float sum = 0; for (int idx = 0; idx < size; idx++) { sum += input[idx]; } return sum; } } </code>

namespace Perceptron
{
    float dotProduct(float * weight, float * activation, int size)
    {
        float sum = 0;

        for (int idx = 0; idx < size; idx++)
        {
            sum += weight[idx] * activation[idx];
        }

        return sum;
    }

    float sum(float * input, int size)
    {
        float sum = 0;

        for (int idx = 0; idx < size; idx++)
        {
            sum += input[idx];
        }

        return sum;
    }
    
}

Perceptron.cpp

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>
#include <cmath>
#include <iostream>
#include "Helpers.cpp"
namespace Perceptron
{
class Perceptron
{
private:
int numLayers;
float learningRate;
int * layerSizes; // layerSizes[layer]
float * * * weights; // weights[source layer][destination neuron][source neuron]
float * * biases;
float * * activations; // activations[layer][neuron]
public:
Perceptron(int numLayers, int * layerSizes, float learningRate)
{
this->numLayers = numLayers;
this->layerSizes = layerSizes;
this->learningRate = learningRate;
weights = new float * * [numLayers - 1]; // No weights from last layer.
for (int layer = 0; layer < numLayers - 1; layer++)
{
weights[layer] = new float * [layerSizes[layer + 1]]; // Destination neuron array.
for (int source = 0; source < layerSizes[layer]; source++)
{
weights[layer][source] = new float[layerSizes[layer]]; // Source neuron array.
}
}
activations = new float * [numLayers];
biases = new float * [numLayers];
for (int layer = 0; layer < numLayers; layer++)
{
activations[layer] = new float[layerSizes[layer]];
biases[layer] = new float[layerSizes[layer]];
}
}
void print()
{
std::cout << "Weights:" << std::endl;
for (int layer = 0; layer < numLayers - 1; layer++)
{
std::cout << "Layer " << layer << " weights:";
for (int destNeuron = 0; destNeuron < layerSizes[layer + 1]; destNeuron++)
{
for (int sourceNeuron = 0; sourceNeuron < layerSizes[layer]; sourceNeuron++)
{
std::cout << sourceNeuron << " -> " << destNeuron << ": " << weights[layer][destNeuron][sourceNeuron] << std::endl;
}
}
std::cout << std::endl << std::endl;
}
std::cout << "Biases" << std::endl;
for (int layer = 0; layer < numLayers; layer++)
{
for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
{
std::cout << biases[layer][neuron] << " ";
}
std::cout << std::endl;
}
std::cout << "Activations" << std::endl;
for (int layer = 0; layer < numLayers; layer++)
{
for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
{
std::cout << activations[layer][neuron] << " ";
}
std::cout << std::endl;
}
}
void initializeWeightsAndBiases()
{
srand(time(NULL));
for (int layer = 0; layer < numLayers - 1; layer++)
{
for (int destNeuron = 0; destNeuron < layerSizes[layer + 1]; destNeuron++)
{
for (int sourceNeuron = 0; sourceNeuron < layerSizes[layer]; sourceNeuron++)
{
weights[layer][destNeuron][sourceNeuron] = 2 * ((float) rand()) / (float) RAND_MAX;
weights[layer][destNeuron][sourceNeuron] -= 1;
}
}
}
for (int layer = 0; layer < numLayers; layer++)
{
for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
{
biases[layer][neuron] = 2 * ((float) rand()) / (float) RAND_MAX;
biases[layer][neuron] -= 1;
}
}
}
float * forwardPropogation(float input[])
{
int outputSize = layerSizes[numLayers - 1];
float * output = new float[outputSize];
// For each layer
for (int layer = 0; layer < numLayers; layer++)
{
// For each neuron in that layer.
for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
{
if (layer == 0)
{
// Activation equals input.
activations[layer][neuron] = input[neuron];
}
else
{
activations[layer][neuron] = sigmoid(
dotProduct(
weights[layer - 1][neuron],
activations[layer - 1],
layerSizes[layer - 1]
) + biases[layer][neuron],
false);
}
}
}
for (int neuron = 0; neuron < outputSize; neuron++)
{
output[neuron] = activations[numLayers - 1][neuron];
}
// TODO - Free all memory.
return output;
}
void backPropogation(float * input, float * goal)
{
// Forward prop
float * forwardResult = forwardPropogation(input);
float * * errors = new float * [numLayers];
for (int layer = 0; layer < numLayers; layer++)
{
errors[layer] = new float[layerSizes[layer]];
}
// Output layer errors.
for (int neuron = 0; neuron < layerSizes[numLayers - 1]; neuron++)
{
errors[numLayers - 1][neuron] = cost(goal[neuron], forwardResult[neuron]);
}
// Hidden layers errors.
for (int layer = numLayers - 2; layer >= 0; layer--)
{
for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
{
float errorSum = 0.0;
float zSum = 0.0;
for (int next = 0; next < layerSizes[layer + 1]; next++)
{
errorSum += (errors[layer + 1][next] * weights[layer][next][neuron]);
}
if (layer == 0)
{
//zSum = input[neuron] + biases[0][neuron];
for (int prev = 0; prev < layerSizes[0]; prev++) // inputSize should be defined globally or passed as a parameter
{
zSum += weights[layer][neuron][prev] * input[prev];
}
zSum += biases[layer][neuron];
}
else
{
for (int prev = 0; prev < layerSizes[layer - 1]; prev++)
{
zSum += (weights[layer - 1][neuron][prev] * activations[layer - 1][prev]);
}
zSum += biases[layer][neuron];
}
errors[layer][neuron] = errorSum * sigmoid(zSum, true);
}
}
// Adjust Weights.
for (int layer = 0; layer < numLayers - 1; layer++)
{
for (int dest = 0; dest < layerSizes[layer + 1]; dest++)
{
for (int source = 0; source < layerSizes[layer]; source++)
{
weights[layer][dest][source] -= learningRate * (errors[layer + 1][dest] * activations[layer][source]);
}
}
}
// Adjust Biases.
for (int layer = 0; layer < numLayers; layer++)
{
for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
{
biases[layer][neuron] -= learningRate * (errors[layer][neuron]);
}
}
// TODO - Free all memory.
}
float sigmoid(float x, bool derivative)
{
if (derivative)
{
return x * (1 - x);
}
else
{
return 1 / (1 + exp(0 - x));
}
}
float cost(float expected, float calculated)
{
return (calculated - expected);
}
};
};
</code>
<code> #include <cmath> #include <iostream> #include "Helpers.cpp" namespace Perceptron { class Perceptron { private: int numLayers; float learningRate; int * layerSizes; // layerSizes[layer] float * * * weights; // weights[source layer][destination neuron][source neuron] float * * biases; float * * activations; // activations[layer][neuron] public: Perceptron(int numLayers, int * layerSizes, float learningRate) { this->numLayers = numLayers; this->layerSizes = layerSizes; this->learningRate = learningRate; weights = new float * * [numLayers - 1]; // No weights from last layer. for (int layer = 0; layer < numLayers - 1; layer++) { weights[layer] = new float * [layerSizes[layer + 1]]; // Destination neuron array. for (int source = 0; source < layerSizes[layer]; source++) { weights[layer][source] = new float[layerSizes[layer]]; // Source neuron array. } } activations = new float * [numLayers]; biases = new float * [numLayers]; for (int layer = 0; layer < numLayers; layer++) { activations[layer] = new float[layerSizes[layer]]; biases[layer] = new float[layerSizes[layer]]; } } void print() { std::cout << "Weights:" << std::endl; for (int layer = 0; layer < numLayers - 1; layer++) { std::cout << "Layer " << layer << " weights:"; for (int destNeuron = 0; destNeuron < layerSizes[layer + 1]; destNeuron++) { for (int sourceNeuron = 0; sourceNeuron < layerSizes[layer]; sourceNeuron++) { std::cout << sourceNeuron << " -> " << destNeuron << ": " << weights[layer][destNeuron][sourceNeuron] << std::endl; } } std::cout << std::endl << std::endl; } std::cout << "Biases" << std::endl; for (int layer = 0; layer < numLayers; layer++) { for (int neuron = 0; neuron < layerSizes[layer]; neuron++) { std::cout << biases[layer][neuron] << " "; } std::cout << std::endl; } std::cout << "Activations" << std::endl; for (int layer = 0; layer < numLayers; layer++) { for (int neuron = 0; neuron < layerSizes[layer]; neuron++) { std::cout << activations[layer][neuron] << " "; } std::cout << std::endl; } } void initializeWeightsAndBiases() { srand(time(NULL)); for (int layer = 0; layer < numLayers - 1; layer++) { for (int destNeuron = 0; destNeuron < layerSizes[layer + 1]; destNeuron++) { for (int sourceNeuron = 0; sourceNeuron < layerSizes[layer]; sourceNeuron++) { weights[layer][destNeuron][sourceNeuron] = 2 * ((float) rand()) / (float) RAND_MAX; weights[layer][destNeuron][sourceNeuron] -= 1; } } } for (int layer = 0; layer < numLayers; layer++) { for (int neuron = 0; neuron < layerSizes[layer]; neuron++) { biases[layer][neuron] = 2 * ((float) rand()) / (float) RAND_MAX; biases[layer][neuron] -= 1; } } } float * forwardPropogation(float input[]) { int outputSize = layerSizes[numLayers - 1]; float * output = new float[outputSize]; // For each layer for (int layer = 0; layer < numLayers; layer++) { // For each neuron in that layer. for (int neuron = 0; neuron < layerSizes[layer]; neuron++) { if (layer == 0) { // Activation equals input. activations[layer][neuron] = input[neuron]; } else { activations[layer][neuron] = sigmoid( dotProduct( weights[layer - 1][neuron], activations[layer - 1], layerSizes[layer - 1] ) + biases[layer][neuron], false); } } } for (int neuron = 0; neuron < outputSize; neuron++) { output[neuron] = activations[numLayers - 1][neuron]; } // TODO - Free all memory. return output; } void backPropogation(float * input, float * goal) { // Forward prop float * forwardResult = forwardPropogation(input); float * * errors = new float * [numLayers]; for (int layer = 0; layer < numLayers; layer++) { errors[layer] = new float[layerSizes[layer]]; } // Output layer errors. for (int neuron = 0; neuron < layerSizes[numLayers - 1]; neuron++) { errors[numLayers - 1][neuron] = cost(goal[neuron], forwardResult[neuron]); } // Hidden layers errors. for (int layer = numLayers - 2; layer >= 0; layer--) { for (int neuron = 0; neuron < layerSizes[layer]; neuron++) { float errorSum = 0.0; float zSum = 0.0; for (int next = 0; next < layerSizes[layer + 1]; next++) { errorSum += (errors[layer + 1][next] * weights[layer][next][neuron]); } if (layer == 0) { //zSum = input[neuron] + biases[0][neuron]; for (int prev = 0; prev < layerSizes[0]; prev++) // inputSize should be defined globally or passed as a parameter { zSum += weights[layer][neuron][prev] * input[prev]; } zSum += biases[layer][neuron]; } else { for (int prev = 0; prev < layerSizes[layer - 1]; prev++) { zSum += (weights[layer - 1][neuron][prev] * activations[layer - 1][prev]); } zSum += biases[layer][neuron]; } errors[layer][neuron] = errorSum * sigmoid(zSum, true); } } // Adjust Weights. for (int layer = 0; layer < numLayers - 1; layer++) { for (int dest = 0; dest < layerSizes[layer + 1]; dest++) { for (int source = 0; source < layerSizes[layer]; source++) { weights[layer][dest][source] -= learningRate * (errors[layer + 1][dest] * activations[layer][source]); } } } // Adjust Biases. for (int layer = 0; layer < numLayers; layer++) { for (int neuron = 0; neuron < layerSizes[layer]; neuron++) { biases[layer][neuron] -= learningRate * (errors[layer][neuron]); } } // TODO - Free all memory. } float sigmoid(float x, bool derivative) { if (derivative) { return x * (1 - x); } else { return 1 / (1 + exp(0 - x)); } } float cost(float expected, float calculated) { return (calculated - expected); } }; }; </code>

#include <cmath>
#include <iostream>
#include "Helpers.cpp"


namespace Perceptron
{
    class Perceptron
    {
        private:
            int numLayers;
            float learningRate;
            int * layerSizes; // layerSizes[layer]
            float * * * weights; // weights[source layer][destination neuron][source neuron]
            float * * biases;
            float * * activations; // activations[layer][neuron]
        
        public:
            Perceptron(int numLayers, int * layerSizes, float learningRate)
            {
                this->numLayers = numLayers;
                this->layerSizes = layerSizes;
                this->learningRate = learningRate;

                weights = new float * * [numLayers - 1]; // No weights from last layer.
                for (int layer = 0; layer < numLayers - 1; layer++)
                {
                    weights[layer] = new float * [layerSizes[layer + 1]]; // Destination neuron array.

                    for (int source = 0; source < layerSizes[layer]; source++)
                    {
                        weights[layer][source] = new float[layerSizes[layer]]; // Source neuron array.
                    }
                }

                activations = new float * [numLayers];
                biases = new float * [numLayers];
                for (int layer = 0; layer < numLayers; layer++)
                {
                    activations[layer] = new float[layerSizes[layer]];
                    biases[layer] = new float[layerSizes[layer]];
                }

            }


            void print()
            {
                std::cout << "Weights:" << std::endl;
                for (int layer = 0; layer < numLayers - 1; layer++)
                {
                    std::cout << "Layer " << layer << " weights:";
                    for (int destNeuron = 0; destNeuron < layerSizes[layer + 1]; destNeuron++)
                    {
                        for (int sourceNeuron = 0; sourceNeuron < layerSizes[layer]; sourceNeuron++)
                        {
                            std::cout << sourceNeuron << " -> " << destNeuron << ": " << weights[layer][destNeuron][sourceNeuron] << std::endl;
                        }
                    }
                    std::cout << std::endl << std::endl;
                }

                std::cout << "Biases" << std::endl;
                for (int layer = 0; layer < numLayers; layer++)
                {
                    for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
                    {
                        std::cout << biases[layer][neuron] << " ";
                    }
                    std::cout << std::endl;
                }

                std::cout << "Activations" << std::endl;
                for (int layer = 0; layer < numLayers; layer++)
                {
                    for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
                    {
                        std::cout << activations[layer][neuron] << " ";
                    }
                    std::cout << std::endl;
                }
            }


            void initializeWeightsAndBiases()
            {
                srand(time(NULL));

                for (int layer = 0; layer < numLayers - 1; layer++)
                {
                    for (int destNeuron = 0; destNeuron < layerSizes[layer + 1]; destNeuron++)
                    {
                        for (int sourceNeuron = 0; sourceNeuron < layerSizes[layer]; sourceNeuron++)
                        {
                            weights[layer][destNeuron][sourceNeuron] = 2 * ((float) rand()) / (float) RAND_MAX;
                            weights[layer][destNeuron][sourceNeuron] -= 1;
                        }
                    }
                }

                for (int layer = 0; layer < numLayers; layer++)
                {
                    for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
                    {
                        biases[layer][neuron] = 2 * ((float) rand()) / (float) RAND_MAX;
                        biases[layer][neuron] -= 1;
                    }
                }
            }


            float * forwardPropogation(float input[])
            {
                int outputSize = layerSizes[numLayers - 1];
                float * output = new float[outputSize];

                // For each layer
                for (int layer = 0; layer < numLayers; layer++)
                {
                    // For each neuron in that layer.
                    for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
                    {
                        if (layer == 0)
                        {
                            // Activation equals input.
                            activations[layer][neuron] = input[neuron];
                        }
                        else
                        {
                            activations[layer][neuron] = sigmoid(
                                                            dotProduct(
                                                                weights[layer - 1][neuron],
                                                                activations[layer - 1],
                                                                layerSizes[layer - 1]
                                                            ) + biases[layer][neuron],
                                                        false);
                        }
                    }
                }

                for (int neuron = 0; neuron < outputSize; neuron++)
                {
                    output[neuron] = activations[numLayers - 1][neuron];
                }

                // TODO - Free all memory.

                return output;
            }


            void backPropogation(float * input, float * goal)
            {
                // Forward prop
                float * forwardResult = forwardPropogation(input);

                float * * errors = new float * [numLayers];

                for (int layer = 0; layer < numLayers; layer++)
                {
                    errors[layer] = new float[layerSizes[layer]];
                }

                // Output layer errors.
                for (int neuron = 0; neuron < layerSizes[numLayers - 1]; neuron++)
                {
                    errors[numLayers - 1][neuron] = cost(goal[neuron], forwardResult[neuron]);
                }

                // Hidden layers errors.
                for (int layer = numLayers - 2; layer >= 0; layer--)
                {
                    for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
                    {
                        float errorSum = 0.0;
                        float zSum = 0.0;

                        for (int next = 0; next < layerSizes[layer + 1]; next++)
                        {
                            errorSum += (errors[layer + 1][next] * weights[layer][next][neuron]);
                        }

                        if (layer == 0)
                        {
                            //zSum = input[neuron] + biases[0][neuron];
                            for (int prev = 0; prev < layerSizes[0]; prev++) // inputSize should be defined globally or passed as a parameter
                            {
                                zSum += weights[layer][neuron][prev] * input[prev];
                            }
                            zSum += biases[layer][neuron];
                        }
                        else
                        {
                            for (int prev = 0; prev < layerSizes[layer - 1]; prev++)
                            {
                                zSum += (weights[layer - 1][neuron][prev] * activations[layer - 1][prev]);
                            }
                            zSum += biases[layer][neuron];
                        }
                        
                        errors[layer][neuron] = errorSum * sigmoid(zSum, true);
                    }
                }

                // Adjust Weights.
                for (int layer = 0; layer < numLayers - 1; layer++)
                {
                    for (int dest = 0; dest < layerSizes[layer + 1]; dest++)
                    {
                        for (int source = 0; source < layerSizes[layer]; source++)
                        {
                            weights[layer][dest][source] -= learningRate * (errors[layer + 1][dest] * activations[layer][source]);
                        }
                    }
                }

                // Adjust Biases.
                for (int layer = 0; layer < numLayers; layer++)
                {
                    for (int neuron = 0; neuron < layerSizes[layer]; neuron++)
                    {
                        biases[layer][neuron] -= learningRate * (errors[layer][neuron]);
                    }
                }

                // TODO - Free all memory.
            }


            float sigmoid(float x, bool derivative)
            {
                if (derivative)
                {
                    return x * (1 - x);
                }
                else
                {
                    return 1 / (1 + exp(0 - x));
                }
            }

            float cost(float expected, float calculated)
            {
                return (calculated - expected);
            }

    };

};

TrainingData.cpp

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
<code>
#define NUM_TRAINING_DATA 4
float trainingInput[NUM_TRAINING_DATA][2] = {
{ 0, 0 },
{ 0, 1 },
{ 1, 0 },
{ 1, 1 }
};
float trainingGoal[NUM_TRAINING_DATA][1] = {
{ 0 },
{ 1 },
{ 1 },
{ 0 }
};
</code>
<code> #define NUM_TRAINING_DATA 4 float trainingInput[NUM_TRAINING_DATA][2] = { { 0, 0 }, { 0, 1 }, { 1, 0 }, { 1, 1 } }; float trainingGoal[NUM_TRAINING_DATA][1] = { { 0 }, { 1 }, { 1 }, { 0 } }; </code>

#define NUM_TRAINING_DATA 4

float trainingInput[NUM_TRAINING_DATA][2] = {
    { 0, 0 },
    { 0, 1 },
    { 1, 0 },
    { 1, 1 }
};

float trainingGoal[NUM_TRAINING_DATA][1] = {
    { 0 },
    { 1 },
    { 1 },
    { 0 }
};

As shown in main.cpp, I am running back propagation on this simple neural network with 10,000 epochs and a learning rate of 0.01. When I run forward propagation on the training examples, they always come to the same answer: -nan. I have been struggling to understand the back propagation algorithm, and wondering where I am incorrect.

New contributor

Cam D is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

2

Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa Dịch vụ tổ chức sự kiện 5 sao Thông tin về chúng tôi Dịch vụ sinh nhật bé trai Dịch vụ sinh nhật bé gái Sự kiện trọn gói Các tiết mục giải trí Dịch vụ bổ trợ Tiệc cưới sang trọng Dịch vụ khai trương Tư vấn tổ chức sự kiện Hình ảnh sự kiện Cập nhật tin tức Liên hệ ngay Thuê chú hề chuyên nghiệp Tiệc tất niên cho công ty Trang trí tiệc cuối năm Tiệc tất niên độc đáo Sinh nhật bé Hải Đăng Sinh nhật đáng yêu bé Khánh Vân Sinh nhật sang trọng Bích Ngân Tiệc sinh nhật bé Thanh Trang Dịch vụ ông già Noel Xiếc thú vui nhộn Biểu diễn xiếc quay đĩa Dịch vụ tổ chức tiệc uy tín Khám phá dịch vụ của chúng tôi Tiệc sinh nhật cho bé trai Trang trí tiệc cho bé gái Gói sự kiện chuyên nghiệp Chương trình giải trí hấp dẫn Dịch vụ hỗ trợ sự kiện Trang trí tiệc cưới đẹp Khởi đầu thành công với khai trương Chuyên gia tư vấn sự kiện Xem ảnh các sự kiện đẹp Tin mới về sự kiện Kết nối với đội ngũ chuyên gia Chú hề vui nhộn cho tiệc sinh nhật Ý tưởng tiệc cuối năm Tất niên độc đáo Trang trí tiệc hiện đại Tổ chức sinh nhật cho Hải Đăng Sinh nhật độc quyền Khánh Vân Phong cách tiệc Bích Ngân Trang trí tiệc bé Thanh Trang Thuê dịch vụ ông già Noel chuyên nghiệp Xem xiếc khỉ đặc sắc Xiếc quay đĩa thú vị
Trang chủ Giới thiệu Sinh nhật bé trai Sinh nhật bé gái Tổ chức sự kiện Biểu diễn giải trí Dịch vụ khác Trang trí tiệc cưới Tổ chức khai trương Tư vấn dịch vụ Thư viện ảnh Tin tức - sự kiện Liên hệ Chú hề sinh nhật Trang trí YEAR END PARTY công ty Trang trí tất niên cuối năm Trang trí tất niên xu hướng mới nhất Trang trí sinh nhật bé trai Hải Đăng Trang trí sinh nhật bé Khánh Vân Trang trí sinh nhật Bích Ngân Trang trí sinh nhật bé Thanh Trang Thuê ông già Noel phát quà Biểu diễn xiếc khỉ Xiếc quay đĩa
Thiết kế website Thiết kế website Thiết kế website Cách kháng tài khoản quảng cáo Mua bán Fanpage Facebook Dịch vụ SEO Tổ chức sinh nhật